Параллельные вселенные
Споры и гипотезы о существовании неизвестных нам планет-двойников, параллельных вселенных и даже галактик насчитывают уже многие десятилетия. Все они основываются на теории вероятности без привлечения представлений современной физики. В последние годы к ним добавилось еще представление о существовании сверхвселенной, основанное на проверенных теориях - квантовой механике и теории относительности.
Эволюция снабдила нас интуицией в отношении повседневной физики, жизненно важной для наших далеких предков; поэтому, как только мы выходим за рамки повседневности, мы вполне можем ожидать странностей.
Простейшая и самая популярная космологическая модель предсказывает, что у нас есть двойник в галактике, удаленной на расстояние порядка 10 в степени 1028 метров. Расстояние столь велико, что находится за пределами досягаемости астрономических наблюдений, но это не делает нашего двойника менее реальным. Предположение основано на теории вероятности без привлечения представлений современной физики. Принимается лишь допущение, что пространство бесконечно и заполнено материей. Может существовать множество обитаемых планет, в том числе таких, где живут люди с такой же внешностью, такими же именами и воспоминаниями, прошедшие те же жизненные перипетии, что и мы.
Но нам никогда не будет дано увидеть наши иные жизни. Самое далекое расстояние, на которое мы способны заглянуть, это то, которое может пройти свет за 14 млрд. лет, протекших с момента Большого взрыва. Расстояние между самыми далекими от нас видимыми объектами составляет около 431026 м; оно и определяет доступную для наблюдения область Вселенной, называемую объемом Хаббла, или объемом космического горизонта, или просто Вселенной. Вселенные наших двойников представляют собой сферы таких же размеров с центрами на их планетах. Это самый простой пример параллельных вселенных, каждая из которых является лишь малой частью сверхвселенной.
Само определение «вселенная» наводит на мысль, что оно навсегда останется в области метафизики. Однако граница между физикой и метафизикой определяется возможностью экспериментальной проверки теорий, а не существованием неподдающихся наблюдениям объектов. Границы физики постоянно расширяются, включая все более отвлеченные (и бывшие до того метафизическими) представления, например, о шаровидной Земле, невидимых электромагнитных полях, замедлении времени при больших скоростях, суперпозиции квантовых состояний, искривлении пространства и черных дырах. В последние годы к этому перечню добавилось и представление о сверхвселенной. Оно основано на проверенных теориях – квантовой механике и теории относительности – и отвечает обоим основным критериям эмпирической науки: позволяет делать прогнозы и может быть опровергнуто. Ученые рассматривают четыре типа параллельных вселенных. Главный вопрос не в том, существует ли сверхвселенная, а сколько уровней она может иметь.
Уровень I.
За нашим космическим горизонтом
Параллельные вселенные наших двойников составляют первый уровень сверхвселенной. Это наименее спорный тип. Мы все признаем существование вещей, которых мы не видим, но могли бы увидеть, переместившись в другое место или просто подождав, как ждем появления корабля из-за горизонта. Подобный статус имеют объекты, находящиеся за пределами нашего космического горизонта. Размер доступной наблюдению области Вселенной ежегодно увеличивается на один световой год, поскольку нас достигает свет, исходящий из все более далеких областей, за которыми скрывается бесконечность, которую еще предстоит увидеть. Мы, вероятно, умрем задолго до того, как наши двойники окажутся в пределах досягаемости для наблюдений, но если расширение Вселенной поможет, наши потомки смогут увидеть их в достаточно мощные телескопы.
Уровень I сверхвселенной представляется до банальности очевидным. Как может пространство не быть бесконечным? Разве есть где-нибудь знак «Берегись! Конец пространства»? Если существует конец пространства, то что находится за ним? Однако теория гравитации Эйнштейна поставила это интуитивное представление под сомнение. Пространство может быть конечным, если оно имеет положительную кривизну или необычную топологию. Сферическая, тороидальная или «кренделевидная» вселенная может иметь конечный объем, не имея границ. Фоновое космическое микроволновое излучение позволяет проверить существование подобных структур. Однако до сих пор факты говорят против них. Данным соответствует модель бесконечной вселенной, а на все прочие варианты наложены строгие ограничения.
Другой вариант таков: пространство бесконечно, но материя сосредоточена в ограниченной области вокруг нас. В одном из вариантов некогда популярной модели «островной Вселенной» принимается, что на больших масштабах вещество разрежается и имеет фрактальную структуру. В обоих случаях почти все вселенные в сверхвселенной уровня I должны быть пусты и безжизненны. Последние исследования трехмерного распределения галактик и фонового (реликтового) излучения показали, что распределение вещества стремится к однородному в больших масштабах и не образует структур размером более 1024 м. Если такая тенденция сохраняется, то пространство за пределами наблюдаемой Вселенной должно изобиловать галактиками, звездами и планетами.
Для наблюдателей в параллельных вселенных первого уровня действуют те же законы физики, что и для нас, но при иных стартовых условиях. Согласно современным теориям, процессы, протекавшие на начальных этапах Большого взрыва, беспорядочно разбросали вещество, так что была вероятность возникновения любых структур.
Космологи принимают, что наша Вселенная с почти однородным распределением вещества и начальными флуктуациями плотности порядка 1/105 весьма типична (по крайней мере, среди тех, в которых есть наблюдатели). Оценки на основе этого допущения показывают, что ваша ближайшая точная копия находится на расстоянии 10 в степени 1028 м. На расстоянии 10 в степени 1092 м должна располагаться сфера радиусом 100 световых лет, идентичная той, в центре которой находимся мы; так что все, что в следующем веке увидим мы, увидят и находящиеся там наши двойники. На расстоянии около 10 в степени 10118 м от нас должен существовать объем Хаббла, идентичный нашему. Эти оценки выведены путем подсчета возможного числа квантовых состояний, которые может иметь объем Хаббла, если его температура не превышает 108 К. Число состояний можно оценить, задавшись вопросом: сколько протонов способен вместить объем Хаббла с такой температурой? Ответ – 10118. Однако каждый протон может либо присутствовать, либо отсутствовать, что дает 2 в степени 10118 возможных конфигураций. «Короб», содержащий такое количество объемов Хаббла, охватывает все возможности. Размер его составляет 10 в степени 10118 м. За его пределами вселенные, включая нашу, должны повторяться. Примерно те же цифры можно получить на основе термодинамических или квантовогравитационных оценок общего информационного содержания Вселенной.
Впрочем, наш ближайший двойник скорее всего находится к нам ближе, чем дают эти оценки, поскольку процесс формирования планет и эволюция жизни благоприятствуют этому. Астрономы полагают, что наш объем Хаббла содержит по крайней мере 1020 пригодных для жизни планет, некоторые из которых могут быть похожи на Землю.
В современной космологии понятие сверхвселенной уровня I широко применяется для проверки теории. Рассмотрим, как используют космологи реликтовое излучение для того, чтобы отвергнуть модель конечной сферической геометрии. Горячие и холодные «пятна» на картах реликтового излучения имеют характерный размер, зависящий от кривизны пространства. Так вот, размер наблюдаемых пятен слишком мал, чтобы согласоваться со сферической геометрией. Их средний размер случайным образом меняется от одного объема Хаббла к другому, поэтому не исключено, что наша Вселенная сферическая, но имеет аномально малые пятна. Когда космологи говорят, что они исключают сферическую модель на доверительном уровне 99,9%, они имеют в виду, что если модель верна, то меньше чем один объем Хаббла из тысячи будет характеризоваться столь малыми пятнами, как наблюдаемые. Из этого следует, что теория сверхвселенной поддается проверке и может быть отвергнута, хотя мы и не в состоянии видеть иные вселенные. Главное – предсказать, что представляет собой ансамбль параллельных вселенных, и найти распределение вероятностей или то, что математики называют мерой ансамбля. Наша Вселенная должна быть одной из наиболее вероятных. Если же нет, если в рамках теории сверхвселенной наша Вселенная окажется маловероятной, то эта теория столкнется с трудностями. Как мы увидим далее, проблема меры может стать весьма острой. Вся статья:
Свежие комментарии