На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Космос

8 382 подписчика

Свежие комментарии

  • Сергей Бороздин
    Мой алгоритм - в статье на Самиздат и дзен "Библия как научный источник истории Мира"Единый алгоритм э...
  • дмитрий Антонов
    прошу прощения, меня тут небыло давно. А где Юрий В Радюшин? с Новым 2023 годомБыл запущен первы...
  • дмитрий Антонов
    жаль, что тема постепенно потерялась. а ведь тут было так шумно и столько интересного можно было узнать, помимо самих...Запущен CAPSTONE ...

ЦВЕТ РАСТЕНИЙ НА ДРУГИХ ПЛАНЕТАХ

Зеленые человечки уже устарели. На планетах у иных звезд растения могут быть красными, синими и даже черными

Поиски внеземной жизни больше не являются прерогативой научной фантастики или охотников за НЛО. Возможно, современные технологии еще не достигли требуемого уровня, однако с их помощью мы уже способны обнаружить физические и химические проявления фундаментальных процессов, лежащих в основе живого. Астрономы открыли более 200 планет, обращающихся вокруг звезд вне Солнечной системы. Пока мы не можем дать однозначный ответ о вероятности существования на них жизни, но это лишь вопрос времени. В июле 2007 г., проанализировав звездный свет, прошедший сквозь атмосферу экзопланеты, астрономы подтвердили наличие на ней воды. Сейчас разрабатываются телескопы, которые позволят искать следы жизни на планетах типа Земли по их спектрам.

Одним из важных факторов, влияющих на спектр отраженного планетой света, может быть процесс фотосинтеза. Но возможно ли это в других мирах? Вполне! На Земле фотосинтез служит основой практически для всего живого. Несмотря на то что некоторые организмы и научились жить при повышенной температуре в среде метана и в океанских гидротермальных источниках, богатством экосистем на поверхности нашей планеты мы обязаны именно солнечному свету.


Красная Земля, зеленая Земля, синяя Земля. Звезды спектрального класса М (красные карлики) светят слабо, поэтому растения на землеподобных планетах вблизи них должны быть черными, чтобы поглощать как можно больше света (первая панель). Молодые М-звезды опаляют поверхность планет ультрафиолетовыми вспышками, поэтому там организмы должны быть водными (вторая панель). Наше Солнце относится к классу G (третья панель). А вблизи звезд класса F растения получают слишком много света и должны отражать значительную его часть (четвертая панель)


С одной стороны, в процессе фотосинтеза возникает кислород, который вместе с образующимся из него озоном можно обнаружить в атмосфере планеты. С другой стороны, цвет планеты может говорить о наличии на ее поверхности особых пигментов, таких как хлорофилл. Почти век назад, заметив сезонное потемнение поверхности Марса, астрономы заподозрили наличие на нем растений. Были попытки обнаружить признаки зеленых растений в спектре света, отраженного от поверхности планеты. Но сомнительность этого подхода увидел даже писатель Герберт Уэллс, который в своей «Войне миров» заметил: «Очевидно, растительное царство Марса, в отличие от земного, где преобладает зеленый цвет, имеет кроваво-красную окраску». Сейчас мы знаем, что на Марсе нет растений, а возникновение более темных участков на поверхности связано с пылевыми бурями. Сам Уэллс был убежден, что цвет Марса не в последнюю очередь определяется покрывающими его поверхность растениями.

Даже на Земле фотосинтезирующие организмы не ограничиваются зеленым цветом: некоторые растения имеют красные листья, а различные водоросли и фотосинтезирующие бактерии переливаются всеми цветами радуги. А пурпурные бактерии кроме видимого света используют инфракрасное излучение Солнца. Так что же будет преобладать на других планетах? И как мы можем это увидеть? Ответ зависит от механизмов, с помощью которых инопланетный фотосинтез усваивает свет своей звезды, отличающейся по характеру излучения от Солнца. Кроме того, иной состав атмосферы также влияет на спектральный состав падающего на поверхность планеты излучения.

ОСНОВНЫЕ ПОЛОЖЕНИЯ

  • Какого цвета могут быть внеземные растения? С научной точки зрения это отнюдь не праздный вопрос, так как цвет поверхности планеты может указать нам, есть ли на ней жизнь, а точнее – живые организмы, усваивающие энергию света своей звезды путем фотосинтеза.
  • Фотосинтез приспособлен к спектру того света, который попадает на организм. Фактически это спектр излучения родительской звезды, частично поглощенного в атмосфере планеты и, для водных существ, в жидкой воде.
  • Свет любой длины волны, от темно-фиолетового до инфракрасного, может поддерживать фотосинтез. Вблизи звезд более горячих и молодых, чем наше Солнце, растения должны усваивать голубой свет, а сами будут иметь окраску от зеленой до желтой и красной. Планеты, обращающиеся вокруг более холодных звезд, таких как красные карлики, получают меньше видимого света, и растения на них, вынужденные поглощать как можно больше излучения, окажутся черными.

  • Прогнозом цвета внеземных растений заняты многие специалисты — от физиологов растений до астрономов и биохимиков

    Астрономам следует рассматривать четыре возможных сценария в зависимости от типа и возраста звезды.

    Анаэробная океаническая жизнь. Звезда в планетной системе молодая, любого типа. Организмы могут не вырабатывать кислород. Атмосфера может состоять из других газов, таких как метан.

    Аэробная океаническая жизнь. Звезда уже не молодая, любого типа. С момента возникновения оксигенного фотосинтеза прошло достаточно времени для накопления кислорода в атмосфере.

    Аэробная сухопутная жизнь. Звезда зрелая, любого типа. Суша покрыта растениями. Жизнь на Земле находится как раз на этой стадии.

    Анаэробная сухопутная жизнь. Тусклая М-звезда со слабым УФ-излучением. Растения покрывают сушу, но могут и не производить кислород.

    Естественно, проявления фотосинтезирующих организмов в каждом из этих случаев будут различными. Опыт съемки нашей планеты со спутников говорит о том, что заметить жизнь в глубинах океана с помощью телескопа невозможно: два первых сценария не обещают нам цветовых признаков жизни. Единственный шанс ее обнаружить — это поиск атмосферных газов органического происхождения. Поэтому исследователям, применяющим цветовые методы поиска инопланетной жизни, придется сосредоточиться на изучении сухопутных растений с оксигенным фотосинтезом на планетах вблизи F-, G- и K-звезд, либо на планетах М-звезд, но уже с любым типом фотосинтеза.

     ПРИЗНАКИ ЖИЗНИ
    Вещества, которые помимо цвета растений могут быть признаком наличия жизни

    Кислород (O2) и вода (H2O). Даже на безжизненной планете свет родительской звезды, разрушая молекулы водяного пара, приводит к образованию небольшого количества кислорода в атмосфере. Но этот газ быстро растворяется в воде, а также окисляет породы и вулканические газы. Поэтому, если на планете с жидкой водой замечено много кислорода, значит, его производят дополнительные источники, скорее всего — фотосинтез

    Озон (O3). В стратосфере Земли ультрафиолет разрушает молекулы кислорода, которые, соединяясь, образуют озон. Вместе с жидкой водой озон — важный индикатор жизни. В то время как кислород заметен в видимом диапазоне спектра, озон виден в инфракрасных лучах, что проще обнаружить при помощи некоторых телескопов

    Метан (CH4) плюс кислород, или сезонные циклы.Сочетание кислорода и метана трудно получить без фотосинтеза. Верным признаком жизни служат также сезонные колебания концентрации метана. А на мертвой планете концентрация метана почти постоянна: она лишь медленно уменьшается по мере того как солнечный свет расщепляет молекулы

    Хлорметан (CH3Cl). На Земле этот газ образуется при горении растений (в основном при лесных пожарах) и под воздействием солнечного света на планктон и хлор в морской воде. Окисление его разрушает. Но относительно слабое излучение М-звезд может позволить этому газу накопиться в количестве, доступном для регистрации

    Закись азота (N2O). При гниении организмов выделяется азот в форме оксида. Небиологические источники этого газа ничтожны.

    Маленькая фиолетовая точка

    История развития жизни на Земле показывает, что ранние морские фотосинтезирующие организмы на планетах вблизи звезд классов F, G и K могли бы жить в первичной бескислородной атмосфере и развить систему оксигенного фотосинтеза, что позже привело бы к появлению наземных растений. Со звездами класса М ситуация сложнее. Результаты наших вычислений свидетельствуют о том, что оптимальное место для фотосинтезаторов находится на 9 м под водой: слой такой глубины задерживает губительный ультрафиолет, но пропускает достаточно видимого света. Конечно, мы не заметим эти организмы в наши телескопы, но именно они могли бы стать основой сухопутной жизни. В принципе, на планетах вблизи М-звезд растительная жизнь, используя различные пигменты, может быть почти столь же разнообразной, как и на Земле.

    Но позволят ли будущие космические телескопы увидеть следы жизни на этих планетах? Ответ зависит от того, каково будет соотношение водной поверхности и суши на планете. В телескопы первого поколения планеты будут выглядеть как точки, о детальном изучении их поверхности не может быть речи. Все, что ученые получат — это суммарный спектр отраженного света. На основе своих вычислений Тинетти утверждает, что для идентификации растений по этому спектру не менее 20% поверхности планеты должны быть сушей, покрытой растениями и не закрытой облаками. С другой стороны, чем больше площадь морей, тем больше кислорода выделяют в атмосферу морские фотосинтезаторы. Поэтому чем ярче выражены пигментные биоиндикаторы, тем сложнее заметить кислородные биоиндикаторы, и наоборот. Астрономы смогут обнаружить либо те, либо другие, но не оба сразу.

    Если космический телескоп зафиксирует темную полосу в спектре отраженного света какой-либо планеты, и эта полоса будет соответствовать одному из предсказанных цветов, то сидящий за монитором телескопа человек окажется первым, кто увидит следы живого на других планетах. Конечно, необходимо будет исключить все прочие интерпретации: например планета может быть покрыта цветными минералами. Сейчас мы ожидаем, что цвет растений на других планетах ограничивается зеленым, желтым и оранжевым. К сожалению, сказать что-либо точнее мы пока не можем. На Земле растения имеют характерную окраску благодаря хлорофиллу, что позволяет нам замечать с искусственных спутников области, покрытые растениями или водорослями. Будут ли растения на других планетах иметь столь же характерные свойства, мы пока не знаем.

    Наличие жизни на других планетах — настоящей жизни, а не только ископаемых останков или микробов, с трудом выживающих в экстремальных условиях, — может быть обнаружено в самом ближайшем будущем. Но какие из звезд мы должны изучать в первую очередь? Сможем ли мы зарегистрировать спектры планет, расположенных близко к звездам, что особенно актуально в случае М-звезд? В каких диапазонах и с каким разрешением должны наблюдать наши телескопы? Понимание основ фотосинтеза поможет нам создать новые приборы и интерпретировать полученные данные. Проблемы такой сложности могут быть решены только на стыке различных наук. Пока мы находимся лишь в начале пути. Сама возможность поиска внеземной жизни зависит от того, насколько глубоко мы понимаем основы жизни здесь, на Земле.

     

     автор Нэнси Цзян (Nancy Y. Kiang) — биометеоролог из Годдардовского института космических исследований NASA в Нью-Йорке. Она специализируется в компьютерном моделировании взаимодействия экосистем с атмосферой, которое помогает управлять климатом. Кроме того, как член Виртуальной планетной лаборатории, входящей в Институт астробиологии NASA, она изучает возможности обнаружения жизни на других планетах. А еще она снимает кино: ее короткометражный фильм «Единство» показывали на фестивале.

     Перевод: А.В. Сурдина

    Вся статья здесь:

    Источник: http://www.sciam.ru/article/3813/

    Картина дня

    наверх