На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Космос

8 383 подписчика

Свежие комментарии

  • Сергей Бороздин
    Мой алгоритм - в статье на Самиздат и дзен "Библия как научный источник истории Мира"Единый алгоритм э...
  • дмитрий Антонов
    прошу прощения, меня тут небыло давно. А где Юрий В Радюшин? с Новым 2023 годомБыл запущен первы...
  • дмитрий Антонов
    жаль, что тема постепенно потерялась. а ведь тут было так шумно и столько интересного можно было узнать, помимо самих...Запущен CAPSTONE ...

Сигналы из десятого измерения

Как было бы странно, если бы окончательную теорию открыли при нашей жизни!
Открытие окончательных законов природы ознаменует разрыв
в интеллектуальной истории человечества —
самый явный со времен появления современной науки в XVII в.
Можем ли мы вообразить себе сейчас, как это будет?
Стивен Вайнберг
Красота — физический закон?
Теория суперструн дает нам убедительную формулировку теории Вселенной, но не решает фундаментальную проблему: экспериментальная проверка теории при нынешнем уровне развития техники и технологии невозможна. Теория предполагает возможность объединения всех сил при планковской энергии, или 1019 млрд эВ, что примерно в квадрильон раз больше энергетических возможностей нынешних ускорителей частиц.
Физик Дэвид Гросс, высказываясь по поводу затрат на аккумулирование энергии, говорит: «Для этого не хватит денежных запасов в казне всех стран мира вместе взятых. Суммы поистине астрономические»1.

Это обстоятельство вызывает разочарование, так как означает, что экспериментальное подтверждение — двигатель прогресса в физике — уже невозможно получить с помощью машин нынешнего или какого-либо вообразимого другого поколения. А это, в свою очередь, означает, что десятимерная теория — не теория в общепринятом смысле, так как ее невозможно подвергнуть проверке в условиях нынешнего уровня развития техники и технологии на планете. В таком случае напрашивается вопрос: является ли красота как таковая физическим принципом, способным заменить отсутствие экспериментального подтверждения?
Кто-то сразу решительно ответит «нет». Такие теории пренебрежительно называют «опереточной физикой» или «занимательной математикой». Самый язвительный из критиков — нобелевский лауреат Шелдон Глэшоу из Гарварда. В этом споре он взял на себя роль назойливого овода, возглавляющего нападки на физиков, которые утверждают, что высшие измерения могут существовать. Глэшоу обрушивается на этих ученых, сравнивая нынешнюю эпидемию подобных взглядов с вирусом СПИДа — намекая, что она неизлечима. А последствия нынешнего повального увлечения некоторыми теориями он сравнивает с программой «звездных войн» бывшего президента Рейгана:
Вот вам загадка: назовите два масштабных проекта, которые невероятно сложны, требуют многолетних исследований и, возможно, неосуществимы в реальном мире. Это «звездные войны» и доказательство теории струн. Ни тот ни другой замысел невозможно осуществить с имеющимися технологиями, ни один проект не в состоянии достичь поставленных целей. Оба они слишком затратны с точки зрения человеческих ресурсов. И в обоих случаях русские отчаянно пытаются угнаться за нами.2
Подливая масла в огонь споров, Глэшоу даже сочинил стих про теорию всего, заканчивающийся так:
Если хватит теории своеобразия
Превзойти свое струнное орбиобразие, 
И ни возраст ее знатоков, ни склероз
Гетерозисом не ограничит вопрос, — 
Вот тогда есть надежда на умников новых
И не Виттен напишет последнее слово.3
Глэшоу поклялся (но не сдержал клятву) искоренить чуждые ему взгляды в Гарварде, где он преподает. Вместе с тем он признает, что, высказываясь по этому вопросу, зачастую оказывается в меньшинстве. И с сожалением добавляет: «Я чувствую себя динозавром в мире выскочек-млекопитающих»4. (Другие нобелевские лауреаты, к примеру Мюррей Гелл-Манн и Стивен Вайнберг, явно не разделяют взгляды Глэшоу. В частности, Вайнберг заявляет: «В настоящее время теория струн — наш единственный источник кандидатов для работы над окончательной теорией: как же можно требовать, чтобы самые талантливые молодые теоретики не занимались ею?»5)

Понять подтекст дебатов, касающихся объединения всех взаимодействий, а также проблем с экспериментальным подтверждением, поможет поучительная «притча о драгоценном камне».
Для начала предположим, что был некий драгоценный камень поразительной красоты, идеально симметричный в трех измерениях. Однако этот камень не отличался стабильностью. Однажды он взорвался, а осколки разлетелись во все стороны и посыпались градом на двумерную Флатландию. Заинтересованные флатландцы предприняли поиски и сбор обломков. Взрыв камня они назвали Большим взрывом, но так и не поняли, почему обломки рассеяны по всему их миру. В конце концов было выявлено два вида обломков: гладкие, отполированные с одной стороны, которые флатландцы сравнивали с «мрамором», и зазубренные, бесформенные, которые сравнивали с «деревом».
С годами флатландцы разделились на два лагеря. В первом принялись составлять единое целое из полированных обломков. Мало-помалу обломки начали становиться на свои места. Изумляясь при виде того, что получилось, флатландцы пришли к убеждению, что видят некое проявление эффективной новой геометрии. Результат подбора фрагментов флатландцы назвали теорией относительности.
Во втором лагере прилагали все старания, чтобы собрать воедино зазубренные обломки неправильной формы. В поиске рисунков и закономерностей эта группа флатландцев также добилась некоторых успехов. Однако из обломков произвольной формы сложилось всего лишь большее по размерам, но столь же неправильное по форме образование, названное Стандартной моделью. Безобразное нагромождение обломков, известное под этим названием, никого не вдохновляло.
После долгих лет кропотливого мучительного труда, направленного на совмещение двух групп фрагментов, стало ясно, что способа совместить отполированные обломки с обломками произвольной формы не существует.
А потом одного одаренного флатландца осенила блестящая мысль. Он объявил, что два набора фрагментов можно сделать единым целым, если переместить оба «вверх», т. е. в некое место, которое он назвал третьим измерением. Предложенный новый подход озадачил большинство флатландцев: никто не мог понять, что означает слово «вверх». Но с помощью компьютера автору идеи удалось показать, что «мраморные» обломки можно рассматривать как части наружной поверхности какого-то объекта, потому они и отполированы, а «деревянные» обломки относятся к внутренним частям того же объекта. Когда обломки объединили в третьем измерении с помощью компьютера, флатландцы ахнули, увидев изумительный драгоценный камень с идеальной трехмерной симметрией. Одним махом искусственное различие между двумя наборами обломков было устранено с помощью чистой геометрии.
Однако при таком решении несколько вопросов осталось без ответа. Некоторые флатландцы по-прежнему требовали экспериментальных подтверждений, а не только теоретических расчетов, хотели убедиться, что из фрагментов действительно можно собрать драгоценный камень. Теория давала точное представление о том, сколько энергии понадобится, чтобы сконструировать мощные машины, способные поднять обломки «вверх», над Флатландией, и собрать их в трехмерном пространстве. Энергии требовалось в квадрильон раз больше, чем имелось в распоряжении флатландцев.
Кого-то устраивали теоретические расчеты. Даже в отсутствие экспериментального подтверждения некоторые флатландцы сочли, что «красоты» более чем достаточно для того, чтобы решить проблему объединения. Они напоминали, что, как показывает история, решения самых трудных проблем в природе отличаются особой красотой. И справедливо указывали, что теории трехмерности нет равных.
Но другие флатландцы подняли шум. Теория, которую нельзя проверить, — это не теория, возмущались они. И добавляли, что проверка теории истощит лучшие умы и приведет к напрасной трате ценных ресурсов.
Как и в реальном мире, споры во Флатландии продолжались некоторое время, и это даже к лучшему. Как сказал философ XVIII в. Жозеф Жубер, «лучше обсуждать вопрос и ни к чему не прийти, чем решить вопрос без обсуждения».

Сверхпроводящий суперколлайдер: окно в сотворение
Английский философ XVIII в. Дэвид Юм, известный своим высказыванием, что каждая теория должна строиться на фундаменте эксперимента, так и не сумел объяснить, каким образом можно экспериментально подтвердить креационистскую теорию. Юм утверждал, что суть эксперимента — в его воспроизводимости. Если эксперимент нельзя повторять снова и снова в разных местах и в разное время и получать одинаковые результаты, значит, теория не внушает доверия. Но как осуществить эксперимент с сотворением мира? Поскольку сотворение по определению невоспроизводимо, Юму пришлось признать, что подтвердить какую бы то ни было теорию сотворения невозможно. И он заявил, что наука может ответить почти на все вопросы, касающиеся Вселенной, кроме единственного — о сотворении, которое нельзя воспроизвести экспериментальным путем.
В некотором смысле мы столкнулись с современной версией проблемы, обозначенной Юмом в XVIII в. Проблема по-прежнему в энергии, необходимой для воспроизведения сотворения. Но, несмотря на то что прямое экспериментальное подтверждение десятимерной теории в наших лабораториях невозможно, есть несколько способов подойти к этому вопросу косвенным путем. Наиболее логичный подход — расчет на то, что Сверхпроводящий суперколлайдер (ССК) поможет обнаружить субатомные частицы с характерными признаками суперструны, такими как суперсимметрия. Хотя ССК не достигает планковской энергии, благодаря ему мы можем получить убедительное косвенное свидетельство корректности теории суперструн.
ССК (строительство которого было прекращено по настоянию политической оппозиции) обещал стать поистине грандиозной установкой, последней в своем роде. Его строили неподалеку от Далласа, Техас; к 2000 г. должен был получиться гигантский туннель в виде кольца протяженностью 50 миль (80 км) в окружении столь же гигантских магнитов. (Если бы центр кольца находился в Манхэттене, то само оно распростерлось бы вглубь штатов Коннектикут и Нью-Джерси.) Более 3000 штатных и приглашенных физиков и других специалистов понадобилось бы, чтобы проводить эксперименты и анализировать данные, полученные с помощью этой установки.
ССК предназначался для того, чтобы внутри туннеля по кругу разгонялись два пучка протонов до тех пор, пока не достигнут скорости, близкой к скорости света. Поскольку эти пучки должны были перемещаться по часовой стрелке и против нее, было бы нетрудно заставить их столкнуться внутри туннеля, когда они достигнут максимальных значений энергии. Предполагалось, что протоны будут сталкиваться с энергией 40 трлн эВ (4 тераэлектронвольт, или 4 ТэВ), создавая мощный выброс субатомного мусора, пригодного для анализа. Подобных столкновений не случалось со времен Большого взрыва (отсюда и прозвище ССК — «окно в сотворение»). Среди обломков ученые надеялись найти редкие субатомные частицы, способные пролить свет на высшие формы материи.
Неудивительно, что ССК считали колоссальным инженерным и физическим проектом, раздвигающим границы известных технологий. Поскольку магнитные поля, необходимые для того, чтобы вызвать отклонение протонов и антипротонов в туннеле, должны быть исключительно велики (примерно в 100 тысяч раз превосходить магнитное поле Земли), для создания и поддержания такого поля требовались специфические процедуры. К примеру, чтобы уменьшить нагревание и электрическое сопротивление в проводах, магниты предстояло охлаждать почти до абсолютного нуля. Вдобавок их требовалось особым образом обрабатывать, так как в противном случае магнитные поля деформировали бы металл самого магнита.
ССК с проектной стоимостью $11 млрд стал вожделенной целью и предметом интенсивных политических махинаций. В прошлом места для ускорителей выбирали в ходе неприкрытой политической торговли. Так, в штате Иллинойс ускоритель «Фермилаб» (Fermilab) разместили в Батавии, возле самого Чикаго, по той причине, что, согласно журналу Physics Today, президенту Линдону Джонсону требовался решающий голос сенатора от Иллинойса Эверетта Дирксона в голосовании по вопросу войны во Вьетнаме. Вероятно, подобным образом обстояло дело и с ССК. Несмотря на яростную борьбу многих штатов за возможность осуществить этот проект, мало кто удивился, когда в 1988 г. местом размещения ССК был объявлен Техас, где выросли избранный президент США и кандидат в вице-президенты от Демократической партии.

На строительство ССК были затрачены миллиарды долларов, но его так и не завершили. К ужасу сообщества физиков, в 1993 г. палата представителей проголосовала за полное прекращение работ по этому проекту. Даже мощное лобби не помогло возобновить его финансирование. С точки зрения конгресса, дорогостоящий ускоритель частиц можно было рассматривать двояко. С одной стороны, он был лакомым кусочком — объектом, обеспечивающим тысячи рабочих мест и миллиарды долларов федеральных субсидий штату, в котором его строили. С другой стороны, строительство ускорителя можно было рассматривать как напрасную трату сил и средств, не дающую никакой потребительской выгоды. В скудные времена, рассудили в конгрессе, баснословно дорогая игрушка для специалистов в области высоких энергий — непозволительная для государства роскошь. (Однако, справедливости ради, финансирование проекта ССК стоит показать в сравнении с другими. Финансирование программы «звездных войн» составляло $4 млрд в год. Примерно $1 млрд требуется для переоснащения авианосца. Один полет космического корабля многоразового использования обходится в $1 млрд. А строительство единственного бомбардировщика «стелс» В-2 — почти в $1 млрд.)
ССК потерян для нас, и все-таки что мы могли бы обнаружить с его помощью? Как минимум ученые надеялись найти редкие частицы, такие как таинственный бозон Хиггса, предсказанный Стандартной моделью. Именно бозон Хиггса нарушает симметрию, следовательно, является источником массы кварков. Таким образом, мы рассчитывали, что ССК обнаружит «источник массы». Все окружающие нас предметы, которые хоть сколько-нибудь весят, обязаны своей массой бозону Хиггса.
Вместе с тем физики готовы держать пари, что с той же вероятностью ССК мог бы обнаружить редкие частицы, не относящиеся к Стандартной модели. (В качестве возможных вариантов называли «техницветные» частицы, не входящие в Стандартную модель, но очень близкие к ней, и «аксионы», способные объяснить проблему темной материи.) Но, вероятно, наиболее заманчивой была возможность обнаружения суперпартнеров — суперсимметричных партнеров обычных частиц. К примеру, гравитино — суперсимметричный партнер гравитона. Суперсимметричные партнеры кварка и лептона — скварк и слептон соответственно.
Если бы суперпартнеры в конце концов были обнаружены, у нас появился бы слабый шанс увидеть остатки самой суперструны. (Суперсимметрия, как симметрия в теории поля, впервые была открыта в рамках теории суперструн в 1971 г., еще до открытия супергравитации. Теория суперструн — по всей вероятности, единственная, в которой суперсимметрию и гравитацию можно объединить полностью самосогласованным образом.) И даже если потенциальное открытие частиц-суперпартнеров не докажет правильность теории суперструн, то по крайней мере оно заставит замолчать скептиков, утверждающих, что теория суперструн не подтверждена ровным счетом никакими физическими свидетельствами.

Сигналы из космоса
Так как ССК не был построен и не помог обнаружить частицы, представляющие собой низкоэнергетические резонансные колебания суперструны, остается еще одна возможность — измерить энергию космического излучения, т. е. высокоэнергетических субатомных частиц до сих пор неизвестного происхождения, скрывающихся в глубинах космоса за пределами нашей галактики. К примеру, хотя никто не знает, откуда берется космическое излучение, оно обладает энергией, значительно превосходящей ту, которую можно обнаружить в наших лабораториях.
В отличие от управляемого излучения, получаемого в ускорителях частиц, космическое излучение обладает непредсказуемой энергией и не может выдавать ее в определенных количествах по требованию. В каком-то смысле два вида излучения сравнимы с двумя способами тушения пожара — либо достав шланг, либо дожидаясь грозы. Вода из шланга гораздо удобнее: ее можно пустить и перекрыть в любой момент, когда нам захочется, можно регулировать силу струи, вдобавок вода движется с одинаковой скоростью. Следовательно, вода из пожарного гидранта — аналог управляемых пучков в ускорителях частиц. Гроза гораздо мощнее и эффективнее воды из пожарного гидранта. Беда в том, что грозы, как и космическое излучение, непредсказуемы. Регулировать потоки дождевой воды невозможно, как и предсказать их скорость, которая может меняться в широких пределах.
Космическое излучение было открыто 80 лет назад в ходе экспериментов, которые священник-иезуит Теодор Вульф проводил на Эйфелевой башне в Париже. Первые три-четыре десятилетия ХХ в. отважные физики совершали полеты на воздушных шарах или поднимались в горы, чтобы как можно точнее измерить космическое излучение. Но в 1930-х гг. исследования космического излучения мало-помалу прекратились, особенно после того, как Эрнест Лоуренс изобрел циклотрон и получил в лаборатории управляемые лучи — более мощные, чем большинство космических. К примеру, космическое излучение с энергией 100 млн эВ встречается так же часто, как дождевые капли; несколько таких лучей каждую секунду пронизывает каждый квадратный дюйм (2,5 см) земной атмосферы. Однако изобретенные Лоуренсом гигантские установки давали в 10–100 раз больше энергии.

К счастью, эксперименты с космическим излучением разительно изменились с тех пор, как отец Вульф впервые разместил электроскопы на Эйфелевой башне. В настоящее время ракеты и даже спутники доставляют индикаторы излучения на огромную высоту над поверхностью Земли, где влияние атмосферы минимально. Когда высокоэнергетическое космическое излучение пронизывает атмосферу, оно оставляет за собой след из расщепленных атомов. Их фрагменты, в свою очередь, создают град разрушенных атомов или ионов, которые можно выявить с помощью детекторов. Сотрудничество между Чикагским и Мичиганским университетами способствовало самому масштабному на тот момент проекту исследования космического излучения: на одной квадратной миле пустыни было размещено 1089 детекторов, которые должны были сработать под воздействием космического излучения. Для них выбрали идеальное безлюдное место: испытательный полигон Дагуэй в 80 милях (128 км) к юго-западу от Солт-Лейк-Сити, Юта.
Детекторы в Юте достаточно чувствительны, чтобы определить место происхождения самого мощного космического излучения. На данный момент наиболее мощными космическими излучателями признаны Лебедь Х-3 и Геркулес Х-1. По всей вероятности, это большие, вращающиеся нейтронные звезды или даже черные дыры, которые медленно поглощают соседние звезды, создают огромные энергетические воронки и в гигантских количествах выбрасывают в космос излучение (к примеру, протонное).
До настоящего времени наиболее мощное из когда-либо выявленных космических излучений обладало энергией 1020 эВ. Невероятная величина, она в 10 млн раз превосходит энергию, которую мог бы давать ССК. В ближайшем столетии мы не сможем получать с помощью установок энергию, хоть сколько-нибудь сопоставимую с космической. Несмотря на то что и эта колоссальная энергия примерно в 100 млн раз меньше необходимой для изучения десятого измерения, мы надеемся, что энергия, вырабатываемая глубоко в черных дырах нашей галактики, приблизится к планковской. С помощью большого орибитального космического аппарата мы могли бы глубже изучить строение этих источников и обнаружить энергии, даже превосходящие эти.
Согласно одной популярной теории, крупнейший источник энергии в нашей галактике Млечный Путь, не идущий ни в какое сравнение с излучением Лебедя Х-3 или Геркулеса Х-1, находится в центре, который может состоять из миллионов черных дыр. Так что после прекращения конгрессом строительства ССК может оказаться, что самое эффективное средство для изучения десятого измерения может находиться в космосе.

Проверка непроверяемого
Обратившись к истории, мы увидим, что физики не раз торжественно провозглашали те или иные явления «непроверяемыми» или «недоказуемыми». Однако среди ученых встречается и другая позиция в отношении недоступности планковской энергии: благодаря непредвиденным открытиям в будущем возможны косвенные эксперименты с применением энергии, близкой к планковской.
В XIX в. некоторые ученые считали, что подтвердить состав звезд экспериментальным путем не удастся никогда. В 1825 г. французский философ и социолог Огюст Конт в своем «Курсе философии» (Cours de philosophie) заявлял, что звезды навсегда останутся для нас недосягаемыми светящимися точками в небе, так как расстояния, отделяющие нас от них, громадны. Технике XIX в. или любого другого, как утверждал Конт, просто не хватит мощности, чтобы оторваться от Земли и достичь звезд.
Несмотря на то что определение состава звезд было объявлено невыполнимой задачей для любой науки, как ни парадоксально, почти в то же время немецкий физик Йозеф Фраунгофер решил ее. С помощью призмы и спектроскопа он сумел расщепить белый свет далеких звезд и определить их химический состав. Поскольку каждый химический элемент звезд оставляет характерный «отпечаток пальца», а именно дает определенный световой спектр, Фраунгофер без труда осуществил «невыполнимое» и определил, что в составе звезд преобладает водород.
В свою очередь, это вдохновило поэта Иэна Буша на следующие строки:
Ты мигай, звезда ночная!
Где ты, что ты — я-то знаю,
Спектроскоп мне не соврет:
Ты — горящий водород6.
Таким образом, хотя запасы энергии, необходимые для полетов к звездам в ракете, по-прежнему остались недосягаемыми для Конта (как и для любого современного ученого), решающий шаг в исследованиях не потребовал затрат энергии. Ключевую роль сыграло следующее наблюдение: сигналов, исходящих от звезд, а именно их излучения, достаточно, чтобы решить задачу и без непосредственных измерений. Точно так же можно надеяться, что сигналов планковской энергии (возможно, от космического излучения или пока еще неизвестного источника) окажется достаточно для исследования десятого измерения, следовательно, прямые измерения в огромных ускорителях частиц не понадобятся.
Еще один пример «непроверяемой» идеи — существование атомов. В XIX в. атомистическая гипотеза сыграла решающую роль в понимании законов химии и термодинамики. Однако многие физики отказывались верить в существование атомов, считая их всего лишь математическим приемом, по случайности дающим точное описание мира. К примеру, философ Эрнст Мах не верил в существование атомов и рассматривал их только как инструмент для вычислений. (Даже сегодня мы не в состоянии получить изображение атома — из-за принципа неопределенности Гейзенберга, хотя косвенные методы решения этой задачи уже существуют.) Но в 1905 г. Эйнштейн обнародовал убедительное, хоть и косвенное, свидетельство существования атомов, показав, что броуновское движение (т. е. хаотичное движение пылинок, находящихся в жидкости во взвешенном состоянии) можно объяснять как беспорядочные столкновения частиц и атомов в жидкости.
По аналогии можно рассчитывать на экспериментальное подтверждение физики десятого измерения с помощью косвенных методов, которые пока еще не открыты. Вместо фотографий объекта нам, вероятно, придется довольствоваться фотографиями его «тени». Может быть, косвенный подход будет заключаться в тщательном изучении данных о низких энергиях, полученных в ускорителе частиц, а также представлять собой попытки выяснить, оказывает ли физика десятимерного пространства какое-либо влияние на эти данные.

Третьей непроверяемой идеей в физике была гипотеза о существовании неуловимого нейтрино.
В 1930 г. физик Вольфганг Паули выдвинул гипотезу о новой невидимой частице нейтрино, чтобы учесть недостающий энергетический компонент в некоторых экспериментах с радиоактивностью, в которых, казалось, нарушался закон сохранения материи и энергии. Но Паули понял, что нейтрино почти невозможно обнаружить экспериментальным путем, поскольку они взаимодействуют с материей очень слабо и редко. К примеру, если бы нам удалось изготовить цельный свинцовый брус протяженностью несколько световых лет от нашей Солнечной системы до альфы Центавра и поместить его на пути пучка нейтрино, для некоторых из них даже такая преграда оказалась бы преодолимой. Нейтрино способны проходить сквозь Землю так, словно ее не существует, мало того — триллионы нейтрино, излучаемых Солнцем, постоянно проникают сквозь наше тело даже по ночам. Паули признавал: «Я совершил непростительный грех — предположил существование частицы, которую не обнаружат никогда»7.
Нейтрино настолько неуловимы и невыявляемы, что они даже побудили Джона Апдайка написать стих под названием «Космическая наглость»:
Нейтрино, крохотные тени,
Отринув массу и заряд,
Не признают закон общений,
Взаимодействий и преград.
Они по всей Вселенной шарят,
Не поступаясь прямизной.
Для них — пустой надутый шарик
Трилльоннотонный шар земной.
Ничто не сдвинув и не тронув,
Они проходят сквозь него —
Так сквозь стекло скользят фотоны,
Так пыль проносит сквозняком.
Ни стен для них, ни пьедесталов.
Они способны осадить
Холодную закалку стали
И жаркой меди звон и прыть.
Они летят таким карьером,
Что и не снился жеребцам,
Поверх всех классовых барьеров
Вторгаясь в тело мне и вам.
Их суд немыслимо высокий,
Их приговор неотвратим,
Он шлет на головы потоки
Неощутимых гильотин.
Ныряя где-нибудь в Евфрате,
Они уходят в глубину,
Чтобы пронзить из-под кровати
Ньюйоркца и его жену.
Средь ночи протыкать перину!
Вы скажете: вот молодцы!
А я считаю, что нейтрино —
Космические наглецы8.
Хотя когда-то нейтрино по причине слабого взаимодействия с другой материей, считали совершенно непроверяемой теорией, сегодня мы регулярно получаем пучки нейтрино в ускорителях частиц, проводим эксперименты с нейтрино, которые испускает атомный реактор, и выявляем их присутствие в шахтах глубоко под землей. (Когда в 1987 г. ослепительная сверхновая звезда озарила небо в Южном полушарии, физики заметили резкий всплеск нейтрино, проходящих через детекторы глубоко в шахтах. Так впервые детекторы нейтрино были применены для проведения важных астрономических измерений.) Всего за три десятилетия нейтрино прошли путь от идеи, которую невозможно проверить, до ценных помощников современной физики.

Проблема в теории, а не в экспериментах
Если рассматривать историю науки за долгий период времени, можно предположить, что основания для оптимизма все-таки есть. Виттен убежден, что когда-нибудь наука докопается и до планковской энергии. Он заявляет:
Отличить простые вопросы от сложных не всегда бывает легко. В XIX в. вопрос о том, почему вода закипает при 100º, считался неразрешимым. Если бы кто-нибудь сказал физику из XIX в., что в ХХ в. эту температуру можно будет просто вычислить, он счел бы услышанное сказкой... Квантовая теория поля настолько сложна, что никто до конца в нее не верил на протяжении 25 лет.
По мнению Виттена, «удачные идеи всегда получают подтверждение»9.

Астроном Артур Эддингтон даже задавался вопросом, не преувеличивают ли ученые значимость проверки любых предположений. Он писал: «Ученые обычно заявляют, что убеждения должны строиться на наблюдениях, а не на теориях... Я никогда не сталкивался с кем-либо, кто следует этому на практике... Наблюдений недостаточно... теория в значительной мере определяет убеждения»10. Нобелевский лауреат Поль Дирак выразился еще прямее: «Красота уравнения гораздо важнее соответствия эксперименту»11. Или, говоря словами ученого из ЦЕРНа Джона Эллиса, «как было написано на обертке конфеты, которая попалась мне несколько лет назад, «в этом мире только оптимисты добиваются хоть чего-нибудь»». Но несмотря на внушающие некоторый оптимизм доводы, ситуация с экспериментами удручает. Я согласен со скептиками в том, что максимум, на который мы можем рассчитывать, — косвенная проверка десятимерной теории в XXI в. Дело в том, что в конечном счете это теория сотворения, поэтому ее проверка неизбежно предусматривает частичное воспроизведение Большого взрыва в лабораторных условиях.
Лично я не считаю, что нам придется ждать целый век, пока наши ускорители, космические зонды и счетчики частиц космического излучения станут достаточно мощными, для того чтобы получить косвенные подтверждения существования десятого измерения. Спустя некоторое время, явно еще при жизни нынешних физиков, кому-то хватит интеллекта либо подтвердить, либо опровергнуть десятимерную теорию с помощью струнной теории поля или других непертурбативных уравнений. Таким образом, это проблема теоретического, а не экспериментального свойства.

Если предположить, что какой-нибудь талантливый физик решит задачу струнной теории поля и выведет из нее известные свойства нашей Вселенной, останется практическая проблема: когда мы сумеем использовать возможности теории гиперпространства. Есть два варианта:
1. Мы дождемся, когда наша цивилизация освоит энергии, в триллионы раз превосходящие те виды, которые мы можем получить сегодня.
2. Мы встретим представителей внеземных цивилизаций, владеющих искусством управления гиперпространством.

Напомним: понадобилось около 70 лет (между появлением работ Фарадея и Максвелла и работ Эдисона и его коллег), чтобы приступить к использованию электромагнитного взаимодействия в практических целях. Однако современная цивилизация во многом зависит от овладения этой силой. Ядерное взаимодействие было открыто почти на рубеже веков, но даже теперь, 80 лет спустя, у нас нет способов надежно управлять им с помощью термоядерных реакторов. Следующий скачок — обуздание силы единой теории поля — потребует гораздо более значительного скачка в развитии нашей техники и технологии и, вероятно, будет иметь еще более значительные последствия.
Фундаментальная проблема заключается в том, что мы заставляем теорию суперструн отвечать на вопросы о повсе­дневной энергии, тогда как ее стихия — планковская энергия. Эта поразительная энергия высвободилась только в момент сотворения. Иначе говоря, теория суперструн — не что иное, как теория сотворения. И словно от гепарда, посаженного в клетку, мы требуем от этого великолепного создания, чтобы оно плясало и пело нам на потеху. Но стихия гепарда — африканские саванны, а стихия теории суперструн — момент сотворения. Тем не менее, учитывая технологический уровень наших искусственных спутников, возможно, найдется новейшая «лаборатория», в которой мы сможем экспериментально исследовать естественную стихию теории суперструн, т. е. отголосок сотворения!
 
Ссылки по тексту:
1. Дэвид Гросс , интервью. См.: «Суперструны: Теория всего?», под ред. Пола Дэвиса и Джулиана Брауна (Paul Davies and J. Brown, ed., Superstrings: A Theory of Everything? Cambridge: Cambridge University Press, 1988), с. 147.
2. Шелдон Глэшоу «Взаимодействия» (Sheldon Glashow, Interactions, New York: Warner, 1988), с. 335.
3. Там же, с. 333.
4. Там же, с. 330.
5. Стивен Вайнберг «Мечты об окончательной теории» (Steven Weinberg, Dreams of a Final Theory, New York: Pantheon, 1992), с. 218–219.
6. Процитировано в: Джон Д. Барроу и Фрэнк Типлер «Антропный космологический принцип» (John D. Barrow and Frank J. Tipler, The Anthropic Cosmological Principle, Oxford: Oxford University Press, 1986), с. 327.
7. Процитировано в: Фрэнк Вильчек и Бетси Дивайн «Стремление к гармонии» (F. Wilczek and B. Devine, Longing for the Harmonies, New York: Norton, 1988), с. 65.
8 Джон Апдайк «Космическая наглость» (John Updike, Telephone Poles and Other Poems, New York: Knopf, 1960). (Пер. Г. Варденги. — Прим. пер.)
9. Процитировано в: Коул «Теория всего» (K. C. Cole, A Theory of Everything, New York Times Magazine, 18 October 1987), с. 28.
10. Процитировано в: Хайнц Пейджелс «Идеальная симметрия : Поиски начала времен» (Heinz Pagels, Perfect Symmetry: The Search for the Beginning of Time, New York: Bantam, 1985), с. 11.
11. Процитировано в: Коул «Ответные вибрации: размышления о физике как образе жизни» (K. C. Cole, Sympathetic Vibrations: Refl ections on Physics as a Way of Life, New York: Bantam, 1985), с. 225.
 

Картина дня

наверх