На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Космос

8 382 подписчика

Свежие комментарии

  • Сергей Бороздин
    Мой алгоритм - в статье на Самиздат и дзен "Библия как научный источник истории Мира"Единый алгоритм э...
  • дмитрий Антонов
    прошу прощения, меня тут небыло давно. А где Юрий В Радюшин? с Новым 2023 годомБыл запущен первы...
  • дмитрий Антонов
    жаль, что тема постепенно потерялась. а ведь тут было так шумно и столько интересного можно было узнать, помимо самих...Запущен CAPSTONE ...

В мире науки и технологий.

Создана искусственная "кожа", способная чувствовать тепло, давление и влажность

Манипулятор с покрытием

Человеческая кожа является достаточно сложным образованием, выполняющим не только функцию защиты организма от неблагоприятных факторов окружающей среды. Огромное количество нервных окончаний, заканчивающихся возле поверхности кожи, позволяют нам с вами чувствовать тепло, влажность, испытывать боль, зуд и множество других ощущений. Такая возможность подобно человеческой коже ощущать внешнюю среду, являлось бы очень полезной функцией для роботов и для создания протезов нового поколения, поэтому достаточно многочисленные группы исследователей постоянно занимаются разработкой различных вариантов искусственной кожи, синтетического эластичного покрытия, снабженного массой различных датчиков.

Одним из последних достижений в данной области является "кожа" разработанная южнокорейскими исследователями из Центра изучения наночастиц и нанотехнологий (Center for Nanoparticle Research) Института фундаментальных наук (Institute for Basic Science, IBS), Сеул, и Национального университета Сеула (Seoul National University). Это покрытие способно чувствовать давление, тепло и влажность, а создатели уже успешно проверили работу этого покрытия в различных ситуациях, включая печать на клавиатуре, удержание холодных и горячих предметов, рукопожатие, и прикосновение к сухой и влажной ткани, имеющих различную текстуру поверхности.

Испытание покрытия
Основой чувствительной искусственной кожи является гибкий и эластичный силиконовый материал полидиметилсилоксан (polydimethylsiloxane, PDMS). В объем этого материала заключены гибкие спирали из кремниевой наноленты, которые за счет пьезоэлектрического эффекта вырабатывают электрический ток, когда они растягиваются или деформируются другим образом, обеспечивая нечто вроде осязательной электрической обратной связи. Кроме этого, кремний достаточно сильно меняет свои электрические характеристики в ответ на изменение температуры, что позволяет при помощи тех же кремниевых нанолент достаточно точно определять температуру объекта прикосновения.

Кроме кремниевых нанолент в искусственную кожу включены конденсаторы, которые выступают в роли датчиков влажности. Когда полимер, находящийся вокруг и между обкладок этих конденсаторов, поглощает воду, это приводит к изменению электрической емкости конденсатора, что измеряется и используется для определения уровня влажности окружающей среды.

Структура искусственной кожи

В принципе, подобную искусственную кожу можно начинать использовать для покрытия роботов и манипуляторов робототехнических систем уже прямо сейчас, ведь необходимые для этого технологии измерения электрических сигналов и методы их оцифровки известны и используются уже достаточно давно. Но для использования такой кожи в качестве покрытия автоматизированных протезов, которые управляются "силой мысли" пройдет еще какое-то время, требующееся на разработку реализации технологии обратной связи, которая позволит передавать сигналы с датчиков кожи напрямую в мозг человека.

 

 

Ученые создали алгоритм, позволяющий рассчитывать элементы нанофотонных микропроцессоров для компьютеров будущего

Нанофотонное устройство-расщепитель


Ученые и инженеры из Стэнфордского университета спроектировали и изготовили опытные образцы кремниевых наноустройств, которые, подобно призме, могут расщепить луч падающего на них света на составные части и преломить этот свет под прямым углом. Но самым интересным является тот факт, что это крошечное оптическое устройство было рассчитано полностью на компьютере с использованием специализированного алгоритма, который, в свою очередь, может быть использован для расчетов массы подобных устройств, способных по-разному манипулировать со светом. Такие оптические наноустройства смогут стать базовыми элементами нанофотонных микропроцессоров для компьютеров следующих поколений, способных обрабатывать данные быстрей и эффективней их современных электронных аналогов.

Спроектированное устройство представляет собой кремниевую пластину с нанесенным на ее поверхность образом, напоминающим всем известный штрих-код. Когда на устройство падает луч света, он расщепляется на два луча с различными длинами волн, отклоненными от направления исходного луча под прямыми углами. Все это происходит подобно тому, как работает призма, только с одной разницей, форма нового устройства весьма далека от формы классической призмы.

Нанофотонное устройство-расщепитель #2


Структура оптического устройства, спроектированная при помощи программного алгоритма, представляет собой чередование полос кремния с воздушными промежутками. В этом устройстве используется эффект, который возникает при прохождении светом границы между двумя средами с различным значением коэффициента преломления. В этом случае некоторая часть света отражается назад, а некоторая часть проходит дальше, претерпевая небольшие изменения. Более того, отраженный свет взаимодействует с проходящим светом весьма сложным образом, что приводит к появлению у устройства в целом весьма специфических и уникальных оптических свойств.

На выходе из устройства-расщепителя получаются два луча света, длины волн которого равны 1550 и 1300 нанометров соответственно. Свет таких длин волн широко используется в технологиях оптоволоконных коммуникаций, что делает наноустройства, наподобие расщепителя, совместимыми с фотоэлектрическими приборами, используемыми в коммуникационном оборудовании.

"Много лет исследователи, работающие в области нанофотоники, разрабатывали элементы, имеющие простые формы и структуру" - рассказывает профессор электротехники Елена Вуцкович (Jelena Vuckovic), возглавлявшая данные исследования, - "Наша программа позволила нам произвести нанофотонные элементы такой формы и строения, до которых не смог бы додуматься ни один из ученых, даже имеющий обширные знания, опыт в этом деле и разбирающийся даже в самых малых тонкостях всех происходящих процессов".

Нанофотонное устройство-расщепитель #3
При помощи своего алгоритма ученые рассчитали структуру еще одного нанофотонного оптического элемента, строение которого весьма напоминает сыр, пронизанный массой сопрягающихся друг с другом полостей. Это устройство, в теории, должно маршрутизировать луч света, направляя его по определенным траекториям в зависимости от состояния нескольких других "управляющих" лучей света, входящих в устройство в заданных местах. Но, к сожалению, имеющиеся сейчас в распоряжении ученых установки не позволяют изготовить с требующейся точностью подобный элемент и проверить его работу на практике.

"Свет может нести гораздо больше данных, нежели электрический ток, распространяющийся по проводникам. Кроме этого, для передачи фотонов требуется меньше энергии, нежели для обеспечения перемещения электронов" - рассказывает Елена Вуцкович, - "К сожалению, существующие технологии нанопроизводства еще не позволяют нам реализовать на практике все возможности, предоставляемые разработанными нами алгоритмами. Но когда такие технологии станут доступны, мы будем готовы встретить этот момент во всеоружии и сразу приступить к разработке и созданию относительно простых нанофотонных коммуникационных устройств и более сложных процессоров, которые будут предназначаться для компьютеров будущих поколений".
 

 

 

 



Источник: tehnowar.ru

 

 

Картина дня

наверх