Обнаружен новый круговорот воды на Марсе

Если раньше Марс был планетой, богатой водой - которую вполне можно было сравнить с нашей Землей - то сегодня он, если судить по его поверхности, совершенно сухой. И вот теперь российские и немецкие планетологи представили свою версию, как Марс мог потерять свои когда-то обильные водные ресурсы, использовав для этого открытие уникального круговорота воды на Красной планете.

Так Марс мог выглядеть миллиарды лет назад: Часть его поверхности, вероятно, покрывал гигантский океан. © NASA/GSFC

«Примерно каждые два земных года, когда в южном полушарии Марса наступает лето, открывается своеобразное окно», - описывают свою работу исследователи под руководством Дмитрия Шапошникова из Московского физико-технического института вместе с учеными группы Пола Хартога из Института исследований Солнечной системы имени Макса Планка в отраслевом журнале Geophysical Research Letters.

- «Только там и только в это время года водяной пар может эффективно подниматься из нижних слоев атмосферы в верхние. И уже там ветры несут редкий газ к северному полюсу. В то время как часть водяного пара распадается и уходит в космос, остальная его часть опускается обратно вниз возле полюсов».

На основе компьютерного моделирования ученые-планетологи показывают, как водяной пар преодолевает барьер холодного воздуха в средних слоях атмосферы Марса и достигает более высоких атмосферных высот. В то же время модели позволяют понять, почему некогда богатый водой Марс, в отличие от Земли, потерял большую часть своей воды.

Подоплека

Миллиарды лет назад Марс был богатой водой планетой с реками и даже огромным океаном. С тех пор соседняя с нами планета сильно изменилась. Сегодня небольшое количество замерзшей воды есть только в почве, а в атмосфере водяной пар встречается только в следах. Согласно расчетов, Марс, вероятно, потерял уже по крайней мере, 80 процентов своих первоначальных водных ресурсов. В верхних слоях атмосферы ультрафиолетовое излучение Солнца расщепляло молекулы воды на водород (H) и гидроксильные радикалы (OH). И уже оттуда водород безвозвратно улетал в космос.

Вертикальное распределение водяного пара на Марсе в течение марсианского года - здесь в 3 часа утра по местному времени. Только когда в южном полушарии стоит лето, водяной пар может достигать более высоких слоев атмосферы. © GPL, Shaposhnikov et al.: Seasonal „Water“ Pump in the Atmosphere of Mars: Vertical Transport to the Thermosphere

Однако измерения космических зондов и космических телескопов показывают, что вода все еще теряется Марсом таким образом. И как это вообще возможно, остается актуальной задачей для ученых. Проблема же представляется в том, что средние слои атмосферы Марса - точно так же, как и тропопауза Земли - должны фактически останавливать дальнейшее поднятие газа вверх. В конце концов, этот атмосферный регион обычно настолько холодный, что водяной пар должен там просто замерзать. Но как же тогда водяной пар достигает верхних слоев атмосферы?

В ходе последнего моделирования российские и немецкие исследователи обнаружили ранее неизвестный механизм, напоминающий своего рода насос: «Модель всесторонне описывает потоки во всей газовой оболочке, которая окружает Марс: от поверхности до высоты 160 километров. И расчеты показывают, что обычно ледяная средняя часть атмосферы становится проницаемой для водяного пара два раза в день - но только в определенном месте и в определенное время года».

При этом решающую роль играет орбита Марса: «Его траектория вокруг Солнца, продолжительностью около двух земных лет, значительно более эллиптическая, чем у нашей планеты. В ближайшей к Солнцу точке (что примерно совпадает с летом в южном полушарии) Марс оказывается на расстоянии примерно в 42 миллионов километров ближе к Солнцу, чем в самой дальней от него точке. Поэтому лето в южном полушарии заметно теплее, чем в северном полушарии».

То есть, если в южном полушарии господствует лето, местный пар может подниматься тогда в определенное время дня с более теплыми воздушными массами и достигать верхних слоев атмосферы. Уже в верхних слоях атмосферы воздушные потоки переносят газ по долготе к Северному полюсу, где он охлаждается и опускается обратно. Однако часть водяного пара избегает этого цикла, когда под воздействием солнечного излучения молекулы воды распадаются и водород из них попадает в космос.

Снова и снова на Марсе возникают пыльные бури, которые покрывают всю планету, как здесь, в июне 2018 года. Фотография была сделана марсоходом NASA Curiosity. Штормы такого рода могут способствовать переносу воды в самые верхние слои марсианской атмосферы. © NASA

И еще одна марсианская особенность может также усугублять необычный круговорот воды: мощные пыльные бури, охватывающие планету, обрушивающиеся на Марс с интервалами в несколько лет. Последние глобальные бури такого рода имели место в 2018 году и в 2007 году, и они были подробно зафиксированы космическими аппаратами на орбите Марса. «Количество пыли, которая циркулирует в атмосфере во время такой бури, облегчает перенос водяного пара в высокие атмосферные слои».

Ученые подсчитали, что во время пыльной бури в 2007 году верхних слоев атмосферы в южном полушарии Марса достигло вдвое больше водяного пара, чем тем же летом без шторма: «Когда частицы пыли поглощают солнечный свет и нагреваются, температура во всей атмосфере повышается до 30 градусов. Наша модель с беспрецедентной точностью отображает, как пыль в атмосфере влияет на микрофизические процессы, связанные с превращением льда в водяной пар».

«И марсианская атмосфера, по-видимому, более проницаема для водяного пара, чем атмосфера Земли», - заключают исследователи. - «А новообнаруженный сезонный круговорот воды в значительной степени способствует тому, что планета продолжает терять воду».

Астрономы открыли самую массивную спиральную галактику

Астрономы, при помощи комплекса радиотелескопов ALMA (Atacama Large Millimeter Array), открыли наверное самую массивную спиральную галактику в нашей Вселенной.

Галактика DLA0817g глазами художника. Фото NRAO/AUI/NSF, S. Dagnello

Галактика, которая получила обозначение DLA0817g, появилась, по мнению ученых, спустя 1,5 миллиарда лет после Большого взрыва. Она находится на расстоянии около 12,2 миллиарда лет световых лет от Земли, однако, учитывая расширения Вселенной, в настоящий момент DLA0817g, должна находится на расстоянии 24,4 миллиарда световых лет.

Галактика DLA0817g в радиодиапазоне. Фото ALMA (ESO/NAOJ/NRAO), M. Neeleman; NRAO/AUI/NSF, S. Dagnello

Ученые назвали объект Диском Вольфа - в честь астронома Артура Вольфа. Галактика DLA0817g стала самой далекой галактикой с вращающимся диском среди всех обнаруженных на данный момент астрономами. Согласно современным моделям, массивные галактики образуются из слияний меньших по массе галактик и скоплений горячего газа. Эти столкновения препятствуют формированию дисков, характерных для Вселенной нынешнего возраста. Поэтому существование Диска Вольфа заставит астрономов пересмотреть механизмы появления таких космических объектов. Вероятно, DLA0817g аккумулировал холодный газ, однако вопрос, как ему удалось сохранить стабильный диск при такой большой массе, остается открытым.

«Скорость звездообразования в DLA0817g, по крайней мере, в десять раз выше, чем в нашей собственной галактике», – пишут ученые, «Должно быть, это одна из самых продуктивных дисковых галактик в ранней Вселенной».

Кометы десятилетия не будет - C / 2019 Y4 (ATLAS) распалась на части

Комета C / 2019 Y4 (ATLAS), которая, по мнению астрономов, должна была стать самой яркой кометой десятилетия, развалилась на части. Катаклизм заснял космический телескоп "Хаббл".

Фрагменты кометы C/2019 Y4 (ATLAS). Первый снимок выполнен космическим телескопом "Хаббл" 20 апреля, второй 23 апреля 2020 года. Фото NASA, ESA, D. Jewitt (UCLA), Q. Ye (University of Maryland)

Напомним, что комета C/2019 Y4 (ATLAS) была обнаружена 28 декабря 2019 года при помощи системы Asteroid Terrestrial-impact Last Alert System (ATLAS) на Гавайях - астрономической системы раннего предупреждения, предназначенной для обнаружения небольших околоземных объектов за несколько дней или недель до того, как они пройдут мимо Земли.

Астрономы предположили, что к концу мая 2020 года комета будет видна даже невооруженным глазом. А 31 мая 2020 года она должна пролететь всего в 0,25 а.е. от Солнца. Но до Солнца C/2019 Y4 (ATLAS) в целом состоянии не добралась.

Начиная с середины марта астрономы наблюдали, как комета, по мере приближения к Солнцу, становится все ярче, однако затем она резко стала тускнуть. Сразу было сделано предположение, что ядро кометы начало распадаться. К наблюдениям подключили космический телескоп "Хаббл", который подтвердил - комета  C/2019 Y4 (ATLAS) развалилась на фрагменты.

Как считают ученые, распад кометы при столь быстром росте ее яркости неудивителен. При подлете к Солнцу C/2019 Y4 начала выбрасывать в окружающее пространство большое количество летучих веществ в замороженном виде. Активный выброс газов, вероятно, способствовал ее распаду на десятки частей. И по всей видимости такое поведение является закономерностью для большинства ядер комет.

Картина дня

))}
Loading...
наверх