Новая архитектура квантовых чипов может стать основой будущих компьютеров
Квантовые компьютеры, являющиеся сегодня более теоретическим понятием, нежели практическим, в будущем будут способны к расчету столь сложных математических моделей, которые еще очень долго будут не по зубам даже самым мощным современным суперкомпьютерам.
Расчеты подобных моделей могут вывести на качественно новый уровень многие области науки, включая химию, биологию, материаловедение и т.п. Но разработка и развитие квантовых вычислительных технологий тормозится тем, что ученые и инженеры просто не в состоянии обеспечить манипуляции с большим количеством квантовых битов, кубитов, в которых хранится и обрабатывается квантовая информация.
Тем не менее, ученые продолжают работать в направлении создания квантовых вычислительных систем, и недавно группе из Технологического научно-исследовательского института Джорджии (Georgia Tech Research Institute) и компании Honeywell International удалось разработать квантовый чип с новой архитектурой, которая позволяет разместить на его площади достаточно большое количество электродов, через которые можно будет записывать и считывать информацию из кубитов.
"Для того, чтобы задать квантовое состояние системы, состоящей из 300 кубитов, требуется 2^300 числовых значений, а это больше, нежели количество протонов в известной нам части Вселенной. Согласно ограничениям, накладываемым известным законом Гордона Мура, люди никогда не будут в состоянии создать классическую вычислительную систему, способную обработать такое количество информации" - рассказывает Николас Гуиз (Nicholas Guise), один из исследователей, - "И эти ограничения определяют то, почему при помощи обычных компьютеров невозможно построить математическую модель не самой сложной квантовой системы".
На роль кубитов квантового компьютера существует несколько претендентов, одним из которых являются ионы некоторых химических элементов, заключенные в ловушке лазерного света в вакуумной камере. К сожалению, масштабируемость такого подхода весьма ограничена, так как решетка ловушки, в узлах которой располагаются ионы-кубиты, создается при помощи электродов, подведенных к краям квантового чипа. И количество таких электродов ограничивается длиной краев (периметром) чипа.
В чипе, созданном командой GTRI/Honeywell, эта проблема решена при помощи использования новых методом микро- и нанопроизводства, которые позволили завести на кристалл чипа большое количество электродов, оставив его верхнюю часть открытой для беспрепятственного доступа туда света лазера. Основа конструкции чипа позаимствована у конструкции корпусов электронных компонентов типа BGA (ball grid array). Матрица крошечных шаров-контактов позволяет подвести электроды напрямую от задней поверхности чипа к ее верхней поверхности, что дает очень высокий показатель плотности упаковки электрических соединений. Кроме этого, исследователи освободили дополнительное пространство поверхности чипа, заменив плоские поверхностные конденсаторы конденсаторами траншейного типа, отнесенными к самым краям кристалла чипа.
Такие шаги, направленные на высвобождение дополнительного свободного пространства, позволили реализовать технологию очень точной фокусировки света лазера, что, в свою очередь, позволяет быстро адресовать каждый отдельный кубит и инициировать выполнение им определенных квантовых операций.
В настоящее время опытные образцы квантовых чипов, которые по мере разработке технологии становились все совершенней, способны улавливать и удерживать ионы-кубиты в ловушках. "Ионы - это очень чувствительные вещи, на которые влияют внешние электрические поля и электромагнитный шум из других источников. Кроме этого, частица неправильного материала, размером в несколько микрон, попавшая в неправильное место, может разрушить ионную ловушку. И когда мы создали первые BGA-матрицы ловушек, то мы были приятно удивлены тем, что они функционировали также, а то и лучше самых высококачественных ловушек, созданных традиционными способами" - рассказывает Николас Гуиз.
В настоящее время работа с матрицей ионных ловушек требует целой комнаты, заполненной сложным и громоздким оборудованием, в которой работает несколько квалифицированных специалистов. Однако, после решения ряда технических проблем ничто не будет мешать миниатюризации этой технологии до уровня весьма компактной системы, которая может стать "стандартным блоком" для построения квантовых вычислительных систем, способных масштабироваться до любого уровня сложности.
Тем не менее, ученые продолжают работать в направлении создания квантовых вычислительных систем, и недавно группе из Технологического научно-исследовательского института Джорджии (Georgia Tech Research Institute) и компании Honeywell International удалось разработать квантовый чип с новой архитектурой, которая позволяет разместить на его площади достаточно большое количество электродов, через которые можно будет записывать и считывать информацию из кубитов.
"Для того, чтобы задать квантовое состояние системы, состоящей из 300 кубитов, требуется 2^300 числовых значений, а это больше, нежели количество протонов в известной нам части Вселенной. Согласно ограничениям, накладываемым известным законом Гордона Мура, люди никогда не будут в состоянии создать классическую вычислительную систему, способную обработать такое количество информации" - рассказывает Николас Гуиз (Nicholas Guise), один из исследователей, - "И эти ограничения определяют то, почему при помощи обычных компьютеров невозможно построить математическую модель не самой сложной квантовой системы".
На роль кубитов квантового компьютера существует несколько претендентов, одним из которых являются ионы некоторых химических элементов, заключенные в ловушке лазерного света в вакуумной камере. К сожалению, масштабируемость такого подхода весьма ограничена, так как решетка ловушки, в узлах которой располагаются ионы-кубиты, создается при помощи электродов, подведенных к краям квантового чипа. И количество таких электродов ограничивается длиной краев (периметром) чипа.
В чипе, созданном командой GTRI/Honeywell, эта проблема решена при помощи использования новых методом микро- и нанопроизводства, которые позволили завести на кристалл чипа большое количество электродов, оставив его верхнюю часть открытой для беспрепятственного доступа туда света лазера. Основа конструкции чипа позаимствована у конструкции корпусов электронных компонентов типа BGA (ball grid array). Матрица крошечных шаров-контактов позволяет подвести электроды напрямую от задней поверхности чипа к ее верхней поверхности, что дает очень высокий показатель плотности упаковки электрических соединений. Кроме этого, исследователи освободили дополнительное пространство поверхности чипа, заменив плоские поверхностные конденсаторы конденсаторами траншейного типа, отнесенными к самым краям кристалла чипа.
Такие шаги, направленные на высвобождение дополнительного свободного пространства, позволили реализовать технологию очень точной фокусировки света лазера, что, в свою очередь, позволяет быстро адресовать каждый отдельный кубит и инициировать выполнение им определенных квантовых операций.
В настоящее время опытные образцы квантовых чипов, которые по мере разработке технологии становились все совершенней, способны улавливать и удерживать ионы-кубиты в ловушках. "Ионы - это очень чувствительные вещи, на которые влияют внешние электрические поля и электромагнитный шум из других источников. Кроме этого, частица неправильного материала, размером в несколько микрон, попавшая в неправильное место, может разрушить ионную ловушку. И когда мы создали первые BGA-матрицы ловушек, то мы были приятно удивлены тем, что они функционировали также, а то и лучше самых высококачественных ловушек, созданных традиционными способами" - рассказывает Николас Гуиз.
В настоящее время работа с матрицей ионных ловушек требует целой комнаты, заполненной сложным и громоздким оборудованием, в которой работает несколько квалифицированных специалистов. Однако, после решения ряда технических проблем ничто не будет мешать миниатюризации этой технологии до уровня весьма компактной системы, которая может стать "стандартным блоком" для построения квантовых вычислительных систем, способных масштабироваться до любого уровня сложности.
Создан первый чип с нейронной сетью на его кристалле, состоящей исключительно из мемристоров
Группа исследователей из Калифорнийского университета (University of California) и университета Стоун-Брук (Stony Brook University) изготовила первый в мире чип, на кристалле которого создана нейронная сеть, состоящая исключительно из мемристоров. Мемристор - это четвертый базовый электронный компонент, своего рода ячейка аналоговой памяти, которая по принципам своей работы является наиболее близким электронным аналогом нейронов и синапсов. Именно на таких компонентах становится возможным создание компьютеров, работа которых подражает работе головного мозга человека и которые, в силу своих особенностей, будут способны самообучаться и быстро решать задачи, которые с трудом поддаются решению на обычных цифровых компьютерах.
Напомним нашим читателям, что идея создания мемристоров была впервые предложена в 1971 году Леоном О Чуа (Leon Chua), профессором из Калифорнийского университета. Но только в 2008 году первые образцы этих электронных приборов были созданы специалистами, работающими влабораториях компании Hewlett Packard. Несмотря на то, что в последние годы по отношению к технологиям мемристоров проводились весьма интенсивные исследования, до последнего времени еще никому не удавалось создать чип с нейронной сетью, построенной исключительно на базе этих компонентов.
Подавляющее большинство существующих нейронных сетей построено на базе специализированных программных алгоритмов. Такие системы используются компаниями Google, Facebook и IBM, обеспечивая работу алгоритмов поиска, распознавания лиц, восприятия информации, представленной естественным языком и поиска ответов на задаваемые вопросы. Преимущества подобных технологий вполне очевидны, но по мере усложнения структуры нейронных сетей растут потребности в ресурсах компьютеров и их вычислительной мощности, которые порой превышают возможности даже самых мощных современных суперкомпьютеров.
Одним из выходов в сложившейся ситуации некоторые специалисты видят замену транзисторов мемристорами, элементами, способными обучаться способом, подобным способу обучения нейронов головного мозга. И размещение на специализированных чипах матриц мемристоров должно существенно снизить затраты на верхний уровень системы управления нейронной сетью.
Новый мемристорный чип был создан при помощи традиционной технологии CMOS и представляет собой не содержащую транзисторов матрицу металло-окисных мемристоров, представляющих собой простейшую нейронную сеть. Возможности этой сети весьма скромны, она может только изучить и распознать образы на черно-белых изображениях, размерами 3 на 3 пикселя. Но, вряд ли что-то сможет помешать в будущем создать более сложные матрицы мемристоров, которые будут обладать возможностью более глубокого самообучения и будут в состоянии решать более сложные задачи, оперируя большими количествами данных.
Напомним нашим читателям, что идея создания мемристоров была впервые предложена в 1971 году Леоном О Чуа (Leon Chua), профессором из Калифорнийского университета. Но только в 2008 году первые образцы этих электронных приборов были созданы специалистами, работающими влабораториях компании Hewlett Packard. Несмотря на то, что в последние годы по отношению к технологиям мемристоров проводились весьма интенсивные исследования, до последнего времени еще никому не удавалось создать чип с нейронной сетью, построенной исключительно на базе этих компонентов.
Подавляющее большинство существующих нейронных сетей построено на базе специализированных программных алгоритмов. Такие системы используются компаниями Google, Facebook и IBM, обеспечивая работу алгоритмов поиска, распознавания лиц, восприятия информации, представленной естественным языком и поиска ответов на задаваемые вопросы. Преимущества подобных технологий вполне очевидны, но по мере усложнения структуры нейронных сетей растут потребности в ресурсах компьютеров и их вычислительной мощности, которые порой превышают возможности даже самых мощных современных суперкомпьютеров.
Одним из выходов в сложившейся ситуации некоторые специалисты видят замену транзисторов мемристорами, элементами, способными обучаться способом, подобным способу обучения нейронов головного мозга. И размещение на специализированных чипах матриц мемристоров должно существенно снизить затраты на верхний уровень системы управления нейронной сетью.
Новый мемристорный чип был создан при помощи традиционной технологии CMOS и представляет собой не содержащую транзисторов матрицу металло-окисных мемристоров, представляющих собой простейшую нейронную сеть. Возможности этой сети весьма скромны, она может только изучить и распознать образы на черно-белых изображениях, размерами 3 на 3 пикселя. Но, вряд ли что-то сможет помешать в будущем создать более сложные матрицы мемристоров, которые будут обладать возможностью более глубокого самообучения и будут в состоянии решать более сложные задачи, оперируя большими количествами данных.
Компания IBM представила первый интегрированный кремний-фотонный чип
Недавно представители компании IBM продемонстрировали то, что они называют первым монолитным кремниево-фотонным чипом, и это событие является большим шагом к созданию компьютерных чипов, на кристаллах которых интегрированы одновременно элементы оптических и электронных схем. Оптические коммуникационные каналы могут обеспечить большую полосу пропускания, нежели их электронные "собратья" работающие на медных электрических проводниках, проложенных по поверхности кристаллов чипов. Кроме этого, оптические каналы расходуют в два раза меньше энергии для передачи определенного количества информации, нежели электронные каналы, что имеет немаловажное значение с учетом роста инфраструктуры Интернета, требующего постоянного увеличения вычислительных мощностей его датацентров.
Инженеры, занимающиеся конструированием чипов, уже давно знают, что использование оптических коммуникационных каналов в пределах кристалла чипа может существенно увеличить его вычислительную мощность, снизив, при этом, количество потребляемой энергии. Но, различные материалы, используемые в оптике и электронике, различные технологии их обработки служили препятствием для их одновременной интеграции. Но, со временем, электронные компоненты начали приближаться к максимально возможным пределам их производительности, что повлекло за собой увеличение их энергетического "аппетита", и это послужило толчком к тому, что исследователи из разных организаций взялись за разработку методов интеграции оптических компонентов на традиционные полупроводниковые электронные чипы.
Следует отметить, что фотонно-электронный чип, созданный специалистами компании IBM, является своего рода компромиссом, в котором сделаны некоторые уступки реалиям современных технологий. Сам кристалл чипа может быть запакован в такой же корпус, как и обычные электронные чипы. Но в его составе отсутствуют одни из самых главных компонентов - источники света. Вместо этого свет от внешних лазеров подается через специальные "лазерные входные порты", но, как только свет попадает внутрь чипа, он может быть использован для передачи и обработки информации. Для ввода информации в чип имеется четыре входных порта, а результаты обработки выдаются наружу через четыре выходных порта, каждый из которых способен обеспечить скорость до 25 гигабит в секунду. А за счет использования технологии мультиплексирования по длине волны скорость каждого порта составляет 100 гигабит в секунду.
Архитектура фотонного чипа является масштабируемой и, пока только в теории, можно будет создать чипы с восемью входными и выходными портами, способные "переварить" поток данных скоростью до 800 гигабит в секунду. Но пока это все только в перспективе, на первом этапе компания IBM планирует использовать новые кремний-фотонные чипы в своих собственных информационных центрах и в составе высокопроизводительных вычислительных систем, где полоса пропускания коммуникационных каналов является главным узким местом.
Представители компании сообщают, что их специалисты уже произвели успешные испытаний четырехпортовых кремний-фотонных чипов, организовав при их помощи сеть, способную передавать информацию со скоростью 100 гигабит в секунду на расстояние до 2 километров. И если специалистам компании удастся создать оптические приемники и передатчики, способные потянуть скорость в 800 гигабит в секунду, то им придется заняться разработкой и производством восьмипортовых кремний-фотонных чипов.
Следующим шагом, который намерена сделать компания IBM, станет интеграция на кристалл чипа источников света - лазеров на основе полупроводниковых материалов III-V группы. Этот шаг будет достаточно долгим и тяжелым, но разработанные за это время технологии позволят включать в состав чипа не только лазеры, но и массу других оптических компонентов, включая волноводы, фотодиоды, оптические резонаторы, усилители и т.п., которые будут размещаться непосредственно рядом с обычными электронными компонентами.
Еще одним внушительным достижением компании является то, что новый кремний-фотонный чип был изготовлен на совершенно стандартном оборудовании по 90-нм CMOS-технологии. Это, в свою очередь, позволит избежать больших капитальных вложений в производство новых чипов тогда, когда эта технология станет достаточно зрелой для массового применения.
Источник: tehnowar.ru.
Свежие комментарии