На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Космос

8 376 подписчиков

Свежие комментарии

  • Сергей Бороздин
    Мой алгоритм - в статье на Самиздат и дзен "Библия как научный источник истории Мира"Единый алгоритм э...
  • дмитрий Антонов
    прошу прощения, меня тут небыло давно. А где Юрий В Радюшин? с Новым 2023 годомБыл запущен первы...
  • дмитрий Антонов
    жаль, что тема постепенно потерялась. а ведь тут было так шумно и столько интересного можно было узнать, помимо самих...Запущен CAPSTONE ...

Новости науки и техники

Новые литий-ионные батареи на основе обычного песка в три раза эффективнее стандартных

Аноды обычных литий-ионных аккумуляторов изготавливаются из графита, но многие считают, что производительность этого материала достигла своего апогея, что побуждает исследователей искать возможные замены. Большая часть внимания уделяется наноструктурам на основе кремния, но его по-прежнему сложно производить в больших количествах.

sand-lithium-ion-battery-1

 Но теперь исследователи из Университета Калифорнии, Риверсайд, преодолели проблемы получения нанокремния, применив несложную технологию обработки песка.

 Когда Захари Фаворз, аспирант Калифорнийского университета в Риверсайде, работал над созданием более производительных литий-ионных батарей, то заметил, что пляжный песок в Сан-Клементе, Калифорния, состоит в основном из кварца или диоксида кремния. Выяснив, где в США можно было бы найти песок с высоким процентом кварца, он отобрал несколько проб на берегу водохранилища Сидар Крик в Техасе.

 Фаворз начал с измельчения песка до нанометрового масштаба, а затем провёл его через ряд стадий очистки, которые придали ему цвет и текстуру, подобную сахарной пудре. Затем он добавил в очищенный кварц обычную соль и магний и нагрел полученный порошок. В этом очень простом процессе, соль выступала в качестве поглотителя тепла, а магний удалял кислород из кварца – что дало в результате чистый кремний. Более того, его наноструктура сформировалась очень пористой – фактически, это 3D-кремний губчатой консистенции. Пористость является одним из ключевых факторов повышения эффективности анодов батарей, поскольку она обеспечивает большую площадь поверхности и позволяет ионам лития проходить через аноды быстрее.

 

sand-lithium-ion-battery-2

 

Команда Фаворза разработала аккумулятор размером с небольшую монету, используя новый анод, и этот аккумулятор уже сейчас значительно превосходит обычные литий-ионных батареи. Производительность нового электрода обеспечивает трёхкратное увеличение времени автономной работы различных устройств, включая мобильные телефоны и электромобили.

Исследователи в настоящее время ищут способ получения нано-кремния в больших количествах, и планируют запустить производство аккумуляторов для мобильных телефонов.

 

Источник: gearmix.ru.

 

 

Создан новый тип прозрачных и гибких дисплеев со сверхвысокой разрешающей способностью

Источник

Изображения

Группа ученых из Оксфордского университета разработала технологию изготовления абсолютно нового типа гибких и прозрачных дисплеев, отличающихся высочайшей разрешающей способностью, настолько высокой, что каждое из изображений, представленных на первом снимке, не превышает толщины человеческого волоса. Эта новая технология позволяет сделать пиксели дисплея, имеющие размеры в несколько сотен нанометров, что, в свою очередь, позволит использовать такие дисплеи в качестве дисплеев "умных" очков, экранов сверхминиатюрных электронных устройств и даже в качестве активных электронных компонентов глазных имплантатов.

Вместо традиционных жидких кристаллов группа оксфордских ученых использовала специальный материал, способный изменять свое состояние от аморфного до кристаллического и наоборот под воздействием электрического тока или света лазера. В роли этого материала выступал сплав германия-сурьмы-теллура (Ge2Sb2Te5, GST), толщиной всего 7 нанометров, расположенный между двумя слоями электропроводного материала оксида олова-индия (indium tin oxide, ITO). Электрический ток очень малой величины и определенного направления, пропускаемый от одного электрода к другому, вызывает переход материала GST из одной фазы в другую, что делает пиксел дисплея прозрачным или непрозрачным.

Следует отметить, что данная работа находится еще на самой ранней стадии, но ученым уже удалось выяснить, что уменьшение толщины слоя материала GST, как это ни парадоксально, приводит к увеличению контрастности изображения, а изменение толщины слоя нижнего электрода позволяет изменить цвет пикселя.

Как уже упоминалось выше, представленные на первом снимке изображения, имеют размеры, меньше, чем толщина человеческого волоса. Но все эти изображения были нарисованы не так, как это делается на обычных дисплеях. Они были нарисованы практически от руки, специальной "кистью", в роли которой выступал наконечник атомно-силового микроскопа, находящийся под необходимым электрическим потенциалам. Тем не менее, учеными уже разработана структура и ведется разработка технологического процесса изготовления матриц пикселей, размерами 300 на 300 нанометров, со всей сопутствующей электрической обвязкой, которые станут основными элементами прозрачных дисплеев со сверхвысокой разрешающей способностью.

Тонкопленочный гибкий дисплей

Процесс изготовления многослойной структуры дисплея достаточно прост. Он заключается в бомбардировке подложки потоками высокоэнергетических частиц, в роли которых выступают ядра атомов напыляемого материала. Это позволяет напылять многослойную структуру дисплея на поверхность практически любого материала и даже очень тонкой и гибкой пленки. В качестве демонстрации этой возможности ученые напылили структуру дисплея на пленку майлара, толщиной всего 200 нанометров.

Кроме всех вышеуказанных преимуществ у дисплея на основе материала GST имеется еще одно крайне важное преимущество. Пикселы такого дисплея практически не требуется обновлять, благодаря этому такой дисплей потребляет при своей работе невероятно малое количество энергии. Более того, такие дисплеи способны работать в двух режимах, в медленном режиме цветных электронных чернил (E-Inc) или в быстром режиме с нижней подсветкой, в котором дисплей способен отображать динамичные видеоданные.

В заключение хочется заметить, что ученые уже подали патентную заявку и ведут переговоры с различными производителями дисплеев по поводу дальнейшей коммерциализации данной технологии. А подробное описание исследований, полученных результатов и разработанных технологий было опубликовано в одном из последних выпусков журнала Nature.
 
 

Источник: tehnowar.ru.

Картина дня

наверх