Последние комментарии

  • Arkadij Latyshev22 июля, 0:37
    Мы уже знаем какие сказки сочиняют в интернете.Тисульская принцесса – находка, о которой приказано забыть
  • Николай Загумённов2 июля, 12:01
    Пардон. Рей является частью рангоута.Гипотеза об инопланетной атомной машине по производству "манны небесной"
  • Alex Колес21 июня, 1:32
    Тогда подождём! Если найдется такая планета, то думаю рвануть туда!Начался поиск планет земного типа возле Альфа Центавра

Откуда астрономы это знают… (Часть 1). Да полно, уж не водят ли они меня за нос?

Как могут астрономы с уверенностью утверждать, например: «В двойной системе, удаленной от нас на 6 тыс. световых лет, вещество срывается с красной звезды, закручивается в тонкий диск и накапливается на поверхности белого карлика», предъявляя в качестве доказательства снимок, на котором не видны ни красная звезда, ни карлик, ни тем более диск, а наличествует лишь яркая точка в окружении еще нескольких таких же?

Эта уверенность — не следствие завышенной самооценки. Она проистекает из умения связать мириады разрозненных наблюдательных фактов в единую, взаимосвязанную, внутренне непротиворечивую картину мироздания, при этом успешно предсказывая открытие новых явлений.
Основу основ наших познаний о Вселенной составляет убежденность в том, что вся она (или, по крайней мере, вся ее видимая часть) управляется теми же физическими законами, которые работают на Земле. Это представление возникло не на пустом месте. Физики никогда не рассматривали нашу планету в отрыве от остальной Вселенной. Закон всемирного тяготения был выведен Ньютоном по наблюдениям Луны, а первым его «триумфом» стал расчет орбиты кометы Галлея. Гелий был обнаружен сначала на Солнце и лишь потом на Земле.
Процессы, которые мы не можем наблюдать непосредственно, мы можем вывести логически, наблюдая производимый ими результат. Результатом этим в подавляющем большинстве случаев оказывается свет, точнее электромагнитное излучение. Всё остальное — представляет собою продукт теоретической интерпретации наблюдений, суть которой заключена для астрономов в простой формуле «О–С», то есть «наблюдаемое» (observed) минус «вычисленное» (computed). Чтобы понять природу какого-либо объекта, нужно построить его модель, то есть физико-математическое описание происходящих в нём процессов, а затем с помощью этой модели вычислить, какое излучение должно рождаться в этом объекте. Дальше остается сравнить предсказания модели с результатами наблюдений и, если сравнение оказалось не вполне убедительным, то либо изменить параметры имеющейся модели, либо придумать новую, более удачную.
Свет несет в себе колоссальный объем информации. Даже беглого взгляда на звезды достаточно, чтобы заметить — они различаются по цвету. Это уже очень важная информация, так как цвет зависит от температуры. Нагретое тело излучает во всём диапазоне длин волн (или частот), но есть определенная длина волны, на которую приходится максимум излучаемой энергии. Для источника излучения с максимально простыми свойствами, который в физике называется абсолютно черным телом, эта длина волны обратно пропорциональна температуре: λ=0,29/T, где длина волны выражена в сантиметрах, а температура — в Кельвинах. Это соотношение называют законом смещения Вина. Именно эта длина волны определяет видимый цвет нагретого тела. В спектрах звезд распределение энергии излучения по длинам волн несколько отличается от «чернотельного», однако связь между «цветом» и температурой сохраняется. Вместо «цвета» в астрономии используются менее живописные, но куда более четкие численные характеристики — так называемые показатели цвета.
Излучение тела может и не быть связано с его нагретостью, то есть иметь нетепловую природу. Например, синхротронное или мазерное излучение. Но и это можно легко установить. Определяем не только частоту, на которую приходится максимум излучения, но и всю форму спектра, то есть распределение излучаемой энергии по частотам. Современная аппаратура позволяет регистрировать излучение в огромном частотном диапазоне — от гамма- до радиоволн. Общая форма спектра звезды уже говорит о природе излучения — тепловое оно или нет, и если тепловое, то какой температуре соответствует. Но в спектре есть и значительно более емкий носитель информации — линии. При определенных условиях вещество излучает или поглощает свет лишь на конкретных частотах. Этот набор частот зависит от индивидуального распределения энергетических уровней атомов, ионов или молекул вещества, а это означает, что по наличию той или иной спектральной линии можно сделать вывод, что в веществе присутствуют эти атомы и молекулы. По интенсивности линии, по ее форме, поляризации, а также по отношению интенсивностей разных линий одного и того же атома или молекулы можно определить содержание данного элемента в атмосфере звезды, степень ионизации, плотность вещества, его температуру, напряженность магнитного поля, ускорение силы тяжести... Если вещество движется, его спектр, в том числе линии, сдвигается как целое из-за эффекта Доплера: в синюю сторону спектра, если вещество приближается к нам, в красную — если вещество удаляется. Это означает, что по смещению линий относительно «лабораторного положения» мы можем делать выводы, например, о движении как звезды в целом, если смещается весь спектр, так и отдельных слоев ее атмосферы, если линии, образующиеся на различных глубинах, смещаются по-разному.

Оболочка, сброшенная во время вспышки повторной новой Т Компаса. Яркая точка в центре оболочки — двойная звезда, состоящая из обычной звезды и белого карлика. Вещество звезды перетекает на белый карлик, постепенно накапливаясь на его поверхности. Когда масса накопленного вещества превышает некий критический предел, в системе происходит взрыв. По каким-то причинам (возможно, в результате взаимодействия с остатками предыдущих взрывов) сброшенная оболочка распадается на тысячи крохотных светящихся узелков. Помимо спектроскопического исследования этих узелков, наблюдая за ними на протяжении нескольких лет можно непосредственно видеть, как они разлетаются прочь от системы.

В спектре звезды, подобной Солнцу, количество спектральных линий измеряется многими тысячами, поэтому можно без преувеличения сказать, что о звездных атмосферах (где образуются линии) мы знаем почти всё. Почти — потому что сама теория образования спектров неидеальна, но продолжает непрерывно совершенствоваться. В любом случае, излучение звезд несет в себе огромное количество информации, которую нужно только уметь расшифровать. Недаром в популярных текстах спектры любят сравнивать с отпечатками пальцев.
Заглянуть в недра звезды можно только теоретически, вооружившись физическими законами. Впрочем, сейчас астрономы активно осваивают методы сейсмологии, по «дрожанию» спектральных линий изучая особенности распространения звуковых волн в недрах звезд и так устанавливая их внутреннее строение. Зная температуру и плотность на поверхности звезды, а также предположив, что ее собственная гравитация уравновешивается тепловым и световым давлением (иначе бы звезда расширялась или сжималась), можно просчитать изменение температуры и плотности с глубиной, добравшись до самого центра светила, и заодно попытаться ответить на вопрос, что именно заставляет Солнце и другие звезды светиться.
Изучение истории Земли показало, что энерговыделение Солнца на протяжении нескольких миллиардов лет оставалось почти неизменным. Это означает, что предполагаемый источник солнечной (звездной) энергии должен быть очень «долгоиграющим». В настоящее время известен только один подходящий вариант — это цепочка термоядерных реакций, начинающаяся реакцией превращения водорода в гелий. Предположив, что именно она составляет основу звездной энергетики, можно построить теоретические модели эволюции звезд различных масс — эволюционные треки, которые позволяют описать изменение светимости и температуры звезды в зависимости от процессов, происходящих в ее недрах. Конечно, мы лишены возможности наблюдать за звездой на протяжении всей ее жизни. Зато в звездных скоплениях мы можем наблюдать, как выглядят звёзды различных масс, но примерно одного возраста.
Теперь поговорим о расстояниях в астрономии. Определение расстояний – многоступенчатая процедура, поэтому систему астрономических «эталонов длины» иногда образно называют «лестницей расстояний». Начинается она с определения расстояний в Солнечной системе, точность которых благодаря радиолокационным методам достигла уже миллиметровых значений. Из этих измерений выводится величина главного астрономического эталона длины — астрономической единицы. Одна астрономическая единица представляет собою среднее расстояние от Земли до Солнца и равна примерно 149,6 млн км.
Следующая ступенька «лестницы расстояний» — метод тригонометрических параллаксов. Орбитальное движение Земли приводит к тому, что в течение года мы оказываемся то по одну сторону Солнца, то по другую и в результате смотрим на звезды под немного разными углами. На земном небосводе это выглядит как колебания звезды вокруг некоторого среднего положения — так называемый годичный параллакс. Чем дальше звезда, тем меньше размах этих колебаний. Определив, насколько сильно меняется видимое положение звезды из-за годичного движения, можно определить расстояние до нее с помощью обычных геометрических формул.
С методом параллаксов связана еще одна единица измерения астрономических расстояний: парсек. Один парсек — это расстояние, с которого радиус земной орбиты виден под углом в одну секунду. Но даже для ближайших звезд параллактический угол очень мал. Например, для α Центавра он равен всего лишь трем четвертям угловой секунды. Поэтому с помощью даже самых современных угломерных инструментов удается определить расстояния до звезд, удаленных от нас не более чем на несколько сотен парсек.
На следующей ступеньке лестницы находятся «фотометрические» расстояния, то есть расстояния, основанные на измерении количества света, поступающего от источника излучения. Чем дальше от нас он находится, тем тусклее становится. Поэтому, если нам каким-то образом удастся определить его истинную яркость, то мы, сравнив ее с видимой яркостью, оценим расстояние до объекта. Здесь вне конкуренции с начала XX века остаются цефеиды — особый род переменных звезд, у которых истинная яркость связана простым соотношением с их периодом изменения блеска. На еще более значительных расстояниях в качестве «стандартных свечей» применяются сверхновые типа Ia. Наблюдения свидетельствуют, что в максимуме блеска их истинная яркость всегда примерно одна и та же.
Наконец, на самых больших удалениях единственным указанием на расстояние до объекта служит пока закон Хаббла — обнаруженная американским астрономом прямая пропорциональность между расстоянием и смещением линий в красную область спектра.
Важно отметить, что вне Солнечной системы единственным прямым методом определения расстояний является метод параллаксов. Все остальные методы в той или иной степени опираются на различные предположения.
С возрастами ситуация гораздо менее определенная. Настолько менее, что не всегда бывает понятно даже, что именно называть возрастом. В пределах Солнечной системы помимо обычных геологических методов для оценки возраста поверхностей небесных тел используется, например, степень их покрытия метеоритными кратерами (при условии, что известна средняя частота падения метеоритов). Цвет поверхности астероидов постепенно меняется под воздействием космических лучей (это явление называется «космической эрозией»), поэтому ее возраст можно примерно оценить по цвету.
Возраст остывающих космических объектов, лишенных источников энергии, — коричневых и белых карликов — оценивают по их температуре. Оценки возрастов пульсаров опираются на скорости замедления их периодов. Примерно определить возраст разлетающейся оболочки сверхновой можно, если удается измерить ее размер и скорость расширения.
С возрастами звезд дело обстоит получше. Правда, большую часть времени жизни звезды она проводит на стадии центрального горения водорода, когда внешне с ней происходит очень мало изменений. Поэтому, глядя, например, на звезду, подобную Солнцу, трудно сказать, образовалась она 1 млрд лет назад или 5 млрд лет назад. Ситуация упрощается, если нам удается наблюдать группу звезд примерно одного возраста, но различных масс.
Такую возможность нам предоставляют звездные скопления. Теория звездной эволюции предсказывает, что звезды различных масс эволюционируют по-разному — чем массивнее звезда, тем быстрее она заканчивает свой «звездный путь». Поэтому чем старше скопление, тем ниже опускается планка максимальной массы населяющих его звезд. Например, в очень молодом звездном скоплении Arches (Арки), расположенном вблизи центра Галактики, есть звезды с массой в десятки солнечных масс. Такие звезды живут не более нескольких миллионов лет, стало быть, именно таков максимальный возраст этого скопления. А вот в шаровых скоплениях наиболее тяжелые звезды имеют массу не более 2 масс Солнца. Это говорит о том, что возрасты шаровых скоплений измеряются миллиардами лет.
Можно возразить, что мы используем для подтверждения теории звездной эволюции возрасты звездных скоплений, определенные с помощью этой самой теории. Но правильность определения возрастов скоплений подтверждается и другими фактами. Например, скопления, которые с точки зрения теории звездной эволюции кажутся самыми молодыми, практически всегда окружены остатками молекулярного облака, из которого они образовались. Самые же старые скопления — шаровые — стары не только с точки зрения теории звездной эволюции, они еще и очень бедны тяжелыми элементами (по сравнению с тем же Солнцем), потому что когда они родились, тяжелые элементы в Галактике еще не успели синтезироваться в достаточных количествах.
Правда, синтез тяжелых элементов — это тоже предсказание теории звездной эволюции! Но и оно подтверждается независимыми наблюдениями: с помощью спектроскопии мы накопили множество данных о химическом составе звезд, и теория звездной эволюции прекрасно объясняет эти данные не только с позиции содержания конкретных элементов, но и с позиции их изотопного состава.
Таким образом, мы имеем в своем распоряжении сложную теоретическую картину жизни звезд различных масс и химического состава, начиная от ранних эволюционных стадий, когда термоядерные реакции в звезде только загорелись, до последних этапов эволюции, когда массивные звезды взрываются как сверхновые, а маломассивные сбрасывают оболочки, оголяя компактные горячие ядра. Она позволила сделать неисчислимые теоретические предсказания, которые находятся в прекрасном согласии с весьма сложной наблюдательной картиной, заключающей в себе данные о температурах, массах, светимостях, химическом составе, пространственном распределении миллиардов звезд самых различных типов.
Звезды ярки, компактны, многочисленны, поэтому их легко наблюдать. Но картина мироздания становится существенно более расплывчатой и фрагментарной, когда мы переходим, например, от звезд к межзвездной среде — газу и пыли, заполняющим большую часть пространства в дисковых галактиках, подобных Млечному Пути. Излучение межзвездного вещества очень слабо, потому что вещество это либо очень разрежено, либо очень холодно. Наблюдать его гораздо сложнее, чем излучение звезд, но, тем не менее, оно тоже очень информативно. Просто инструменты, позволяющие в деталях исследовать межзвездную среду, появились в распоряжении астрономов лишь недавно, буквально в последние 10-20 лет, поэтому неудивительно, что в этой области остается пока много «белых пятен».

(по материалам лекции Дмитрия Вибе,
доктора физ.-мат. н., ведущего научного сотрудника Института астрономии РАН)
источник http://elementy.ru/lib/430399

Популярное

))}
Loading...
наверх